

Caro Cliente,

Dal 1968 EURAL Gnutti S.p.A. produce semilavorati in alluminio, occupando una posizione di leadership mondiale nel settore delle barre per lavorazioni meccaniche. La struttura produttiva è costituita dalla fonderia di Pontevico e dallo stabilimento di produzione di Rovato, che impiegano oltre 400 dipendenti su una superficie complessiva di 400.000 m2, dotati dei più moderni impianti di fusione ed estrusione.

La passione per questo lavoro ha spinto la famiglia Gnutti a cercare sempre l'eccellenza per i propri prodotti, a investire costantemente in ricerca e sviluppo, nelle ultimissime tecnologie, tenendo in altissima considerazione le esigenze dei propri clienti di ottenere il massimo per le loro applicazioni.

La scelta della lega di alluminio più appropriata è un passaggio importantissimo che può decidere il successo di un prodotto. Per questo Eural Gnutti S.p.A. ha deciso di fare questo catalogo dove, per ogni lega, è riportata una dettagliata scheda tecnica con tutti i parametri di cui si può avere bisogno.

Le normative internazionali lasciano ai produttori ampi margini di variabilità per la realizzazione di ogni lega. All'atto pratico questo comporta che, per la stessa lega, si possono avere grosse differenze di caratteristiche meccaniche, con effetti non sempre accettabili sul prodotto finale che si intende ottenere. In EURAL si è generato un codice che, rientrando nelle normative internazionali, restringe ulteriormente le oscillazioni all'interno della stessa lega, garantendo una omogeneità di prodotti costanti nel tempo, volta ad ottenere sempre le migliori caratteristiche meccaniche.

Eural Gnutti S.p.A. è certificata dal 2008 IATF 16949 (Automotive) e dal 2016 AS/EN/JISQ 9100 (Aerospace), certificazioni che garantiscono un sistema di qualità estremamente elevato. Un moderno sistema automatizzato di controlli ad ultrasuoni inoltre, certifica l'assoluta integrità di ogni singola billetta prodotta nella propria fonderia, seconda la classe "A" della normativa SAE STD-2154. In Eural ogni singolo processo produttivo è oggetto di severi controlli di qualità, che vanno oltre le richieste delle normative.

Eural crede fermamente che il dialogo con i propri clienti, attraverso il proprio staff tecnico commerciale, sia indispensabile per supportare nella scelta della lega di alluminio più idonea, offrendo ai propri clienti la massima disponibilità ed esperienza accumulata in oltre cinquant'anni di storia nel mondo delle lavorazioni meccaniche.

A oltre cinquant'anni dalla sua nascita, Eural Gnutti S.p.A. è il più grande produttore di barra trafilata al mondo. Su questa tipologia di prodotto in particolare e sullo sviluppo di leghe di alluminio ad alta lavorabilità per tornerie, Eural ha fondato il suo successo.

Eural offre ai propri clienti servizi che la distinguono nel mercato:

- Missioni commerciali in oltre 50 diversi Paesi nel mondo:
- Assistenza nella scelta della lega più idonea ad ogni lavorazione meccanica;
- Personale tecnico di supporto per i clienti utilizzatori in tutto il mondo nel trovare i migliori parametri di lavorazione per ottenere le migliori prestazioni dall'utilizzo di barre e leghe Eural;
- Consulenza tecnica per la gestione di ogni singola fase del processo, dalla progettazione alla produzione in massa.

EURAL – RICERCA E SVILUPPO

Eural Gnutti S.p.A. destina una quota importante e sempre crescente di investimenti per lo sviluppo di nuove soluzioni per l'industria.

Le nuove leghe **2033, 2077** e **6026^{LF} LEAD FREE** (senza piombo) sono il frutto di anni di studio del comparto Ricerca e Sviluppo. Le normative internazionali che regolano il nostro settore (RoHS, REACH, ELV) si stanno muovendo da tempo verso una drastica limitazione del piombo (Pb) nelle leghe di alluminio ed altri metalli per lavorazioni meccaniche, in quanto ritenuto altamente tossico per la salute dell'uomo e inquinante per l'ambiente.

Le leghe ad alta lavorabilità LEAD FREE by Eural, conformi alle più stringenti limitazioni, sono in grado di non pregiudicare la lavorabilità, garantendo produttività e qualità senza compromessi.

EURAL, consapevole dell'importanza del Mondo in cui viviamo, promuove orgogliosamente l'utilizzo di significative quote di alluminio da riciclo per preservare l'ambiente, per ridurre i consumi energetici necessari alla produzione di alluminio da fonti primarie e conseguentemente ridurre le emissioni di CO2 grazie ad un alto livello di alluminio da riciclo nelle sue leghe LEAD FREE.

2033 by EURAL LEAD FREE

Conforme direttive: RoHS II, ELV, REACH

Campi di applicazione

2033 LEAD FREE by EURAL è una lega dalle molteplici applicazioni, offre un'eccellente lavorabilità grazie ad un truciolo molto fine, caratteristiche meccaniche molto elevate, miglior attitudine all'anodizzazione e saldabilità rispetto a leghe quali 2011, 2007, 2030.

2033 LEAD FREE by EURAL è inoltre fortemente consigliata quale lega in sostituzione di 2011, 2007, 2030 in vista delle imminenti limitazioni al piombo (RoHS, REACH, ELV).

Scelta ecologica

Da diversi anni la normativa RoHS II autorizza in deroga il contenuto di piombo nelle leghe di alluminio per un contenuto massimo pari a 0,4%. Tale limite è sempre stato oggetto di discussione per possibile abbassamento, soprattutto da quando la normativa europea REACH ne ha confermato la tossicità (oltre 0,1% - lista SVHC) e sta procedendo con la definizione di nuovi limiti più bassi consentiti.

2033 LEAD FREE by EURAL è pronta ad ogni possibile scenario futuro in quanto priva di piombo intenzionalmente aggiunto.

Lega ad alto contenuto di alluminio da riciclo.

2033 LEAD FREE by EURAL è il frutto di un lungo e accurato studio da parte del dipartimento di Ricerca e Sviluppo EURAL al fine di poter offrire una lega ad alta lavorabilità, migliorativa di quelle presenti oggi sul mercato.

Alta lavorabilità

2033 LEAD FREE by EURAL è stata studiata appositamente per essere lavorata su torni automatici ad alta velocità grazie ad un truciolo finissimo.

Senza stagno

Esistono in commercio leghe della serie 2000 alluminio + stagno (Sn), ma come ben noto questo è causa di fragilità e rottura dei pezzi lavorati quando sottoposti a stress o alte temperature (> 160°C).

Lo stagno per sua natura ha la tendenza a rompersi bruscamente senza che avvengano precedentemente deformazioni e snervamenti.

2033 LEAD FREE by EURAL non contiene stagno.

Tutti i semilavorati in 2033 LEAD FREE by EURAL sono prodotti da billette in Classe A controllate al 100% ad ultrasuoni (SAE AMS STD 2154).

Programma di produzione

2033 LEAD FREE by EURAL è disponibile sia trafilata che estrusa. Barre tonde trafilate Ø 5 - 76,2mm Stati metallurgici T3, T351 o T8. Barre tonde estruse Ø 30 - 254mm Stato metallurgico T6

Disponibili anche barre quadre, piatte e esagonali.

Ampia gamma di barre trafilate con tolleranze dimensionali h9.

Alternativa a:

2033 LEAD FREE by EURAL è la migliore alternativa a molte leghe di alluminio quali 2007, 2030, 2011, 2028, 2028A, 2041, 2044, 7020.

2033 LEAD FREE by EURAL è il miglior sostituto all'ottone vista la sua eccellente lavorabilità e alle alte caratteristiche meccaniche. Inoltre, in vista delle future restrizioni su contenuto di piombo ammesso nei metalli per lavorazioni meccaniche e, avendo un peso specifico pari a 1/3 rispetto all'ottone, 2033 LEAD FREE by EURAL risulta essere una scelta estremamente conveniente dal punto di vista dell'analisi sui costi di produzione.

RoHS & REACH ed altri metalli

Le imminenti restrizioni in massimo contenuto di piombo ammesso, interesseranno tutti i prodotti ottenuti da lavorazione meccanica anche di acciaio e ottone. Tali metalli, privati del piombo che ne garantiva una buona o discreta lavorabilità, non potranno più essere impiegati.

Per tutti questi casi, ad oggi, l'unica alternativa per lavorabilità è l'alluminio e la migliore lega disponibile è la 2033 LEAD FREE by EURAL.

2033 by EURAL **LEAD FREE**

Codice colore EU rosa

PROGRAMMA DI PRODUZIONE

Unità: mm				•
Trafilata	5 ÷ 76,2	10 ÷ 65	Spess. 12 ÷ 55	10 ÷ 63,5
Estrusa	30 ÷ 254	30 ÷ 165	Spess. 30 ÷ 127	-

Conforme direttive:

2000/53/EU - 2011/65/EU (RoHS II) Pronta alle imminenti restrizioni sul piombo in quanto senza piombo

PRESENTAZIONE

Questa lega sviluppata da EURAL è tra le migliori per lavorabilità su torni automatici ad alta velocità ed offre i seguenti vantaggi:

- Ottima lavorabilità;
- Truciolo molto fine;
- Maggiore durata degli utensili;
- Caratteristiche meccaniche molto elevate
- Miglior attitudine all'anodizzazione e alla saldabilità rispetto a leghe quali 2011, 2007, 2030

Questa lega non contiene né piombo né stagno ed è quindi la miglior soluzione per la produzione di componenti conformi alle attuali e imminenti restrizioni in tema di massimo contenuto di piombo ammesso (RoHS, REACH, ELV).

Principali applicazioni: settore automotive, elettrico, ed elettronico, stampaggio, viteria, bulloneria, dadi, parti filettate anche con spessori limitati.

T3/T6 **Proprietà T8** Lavorabilità all'utensile Anodizzazione protettiva Anodizzazione decorativa Anodizzazione dura Resistenza a corrosione atmosferica Resistenza a corrosione marina Saldabilità MIG - TIG Saldabilità a resistenza Saldabilità a brasatura Deformabilità plastica a freddo Deformabilità plastica a caldo

Esempi di prodotti finiti realizzati con barre Eural

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato	

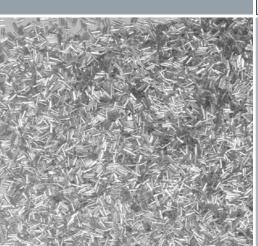
Composi	zione chimica				
Si	0,10 ÷ 1,20				
Fe	≤ 0,70				
Cu	2,20 ÷ 2,70				
Mn	0,40 ÷ 1,00				
Mg	0,20 ÷ 0,60				
Cr	≤ 0,15				
Ni	≤ 0,15				
Zn	≤ 0,50				
Ti	≤ 0,10				
Bi	0,05 ÷ 0,80				
Altri	Cias. 0,05 - Tot. 0,15				

Resto

Caratteristiche fisiche					
Densità	Kg	- 2,77			
	dm ³	2,11			
Modulo di elasticità	MPa	70.000			
Coefficiente di dilatazione termica	x10 ⁻⁶	- 22.0			
Coefficiente di dilatazione termica	°C	- 22,9			
Conducibilità termica a 20°C	W	T3: 151			
Conducibilità termica a 20 C	mk	T8: 172			
Posictività alattrica tinica a 20°C	Ω mm 2	T3: 0,046			
Resistività elettrica tipica a 20°C	m	T8: 0,046			

	Caratteristiche meccaniche minime					
	Stato	Diam. mm	Rm MPa	Rp0,2 MPa	A%	HBW Tipica
_						
	T3	≤ 30	370	240	7	95
Trafilato	T3	30 < D ≤ 80	340	220	7	95
Traf	T351	≤ 80	370	240	5	95
	Т8	≤ 80	370	270	8	95
Estruso	T6	≤ 80	370	250	8	95
Esti	T6	80 < D ≤ 250	340	220	8	95

Codice colore **EU** rosso



Codice colore **USA** marrone

PROGRAMMA DI PRODUZIONE

Unità: mm **Conforme direttive:** Trafilata $5 \div 76,2$ 10 ÷ 65 $10 \div 63,5$ Spess. 12 ÷ 55 2000/53/EU (ELV) - 2011/65/EU (RoHS II) Estrusa 30 ÷ 254 30 ÷ 165 Spess. 30 ÷ 127

PRESENTAZIONE

Questa lega è la più indicata per lavorazione su torni automatici ad alta velocità ed offre i seguenti vantaggi:

- ottima lavorabilità con qualsiasi tipo di utensile;
- minor resistenza al taglio rispetto alla maggior parte delle altre leghe;
- maggiore durata degli utensili;
- area di lavoro sempre pulita per il truciolo molto fine;
- elevate caratteristiche meccaniche;
- possibilità di anodizzare in vari colori i pezzi finiti *.

In vista delle imminenti restrizioni sul contenuto di piombo nei metalli per lavorazioni meccaniche, la lega 2011 non potrà più essere idonea alla produzione di componenti conformi alle normative RoHS, REACH & ELV.

EURAL consiglia quale alternativa conforme alle attuali direttive e pronta ad ogni possibile scenario futuro, la lega ad alta lavorabilità 2033 LEAD FREE.

Principali applicazioni: viteria, bulloneria, dadi, barre filettate.

* Per avere una garanzia di ottima finitura superficiale dei pezzi anodizzati, si consiglia l'impiego di adeguati lubrificanti durante le lavorazioni meccaniche.

Proprietà	T3	/T6	 ٦	_	T8	
Lavorabilità all'utensile			П			
Anodizzazione protettiva			П			
Anodizzazione decorativa			П			
Anodizzazione dura						
Resistenza a corrosione atmosferica						
Resistenza a corrosione marina						
Saldabilità MIG - TIG						
Saldabilità a resistenza						
Saldabilità a brasatura						
Deformabilità plastica a freddo						
Deformabilità plastica a caldo						

Esempi di prodotti finiti realizzati con barre Eural

Caratteristiche meccaniche minim

Diam. mm

< 40

Rm Rp0,2

MPa MPa

320 270

HBW

A% Tipica

10 90

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

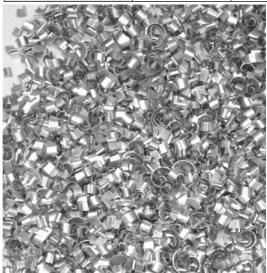
Composizione chimica				
Si	≤ 0,40			
Fe	≤ 0,70			
Cu	5,00 ÷ 6,00			
Mn				
Mg				
Cr				
Ni				
Zn	≤ 0,30			
Ti				
Pb	0,20 ÷ 0,40			
Bi	0,20 ÷ 0,60			
Altri	Cias. 0,05 - Tot. 0,15			
ΔΙ	Resto			

Caratteristiche fisiche					
Densità	Kg	- 2,83			
	dm ³	2,03			
Modulo di elasticità	MPa	70.000			
Coefficiente di dilatazione termica	x10 ⁻⁶	- 22.0			
Coefficiente di dilatazione termica	°C	- 22,9			
Conducibilità termica a 20°C	W	T3: 151			
Conducibilità termica a 20 C	mk	T8: 172			
Posistività alattrica tinica a 20°C	Ω mm ²	T3: 0.043			
Resistività elettrica tipica a 20°C	m	T8: 0.038			

auto di Ciasticita	IVII G	70.000								
		<u> </u>	ato	T3	40 < D ≤ 50	300	250	10	90	
e di dilatazione termica	x10 ⁻⁶	22,9	Trafilato	T3	50 < D ≤ 80	280	210	10	90	
	°C	22,9	-		30 < D ≥ 00	200	210	10	30	
bilità termica a 20°C	W	T3: 151		T8	≤ 80	370	270	8	115	
		T8: 172	osn	T6	≤ 75	310	230	8	110	
	mk	10. 1/2	_	Estru						
elettrica tipica a 20°C	Ω mm 2	T3: 0.043	 E	T6	75 < D ≤ 200	295	195	6	110	
elettrica tipica a 20 C	m	T8: 0.038								

Stato

T3


2007 by EURAL
Rispetta i requisiti della lega
2030 (EN AW2030)

Codice colore EU nero

PROGRAMMA DI PRODUZIONE

Unità: mm				•
Trafilata	14 ÷ 76,2	20 ÷ 65	Spess. 12 ÷ 55	20 ÷ 63,5
Estrusa	30 ÷ 254	30 ÷ 165	Spess. 30 ÷ 127	_

PRESENTAZIONE

La lega 2007 e 2030 hanno caratteristiche meccaniche elevate e un'ottima lavorabilità. Entrambe però hanno un contenuto di piombo particolarmente elevato che le rende non idonee alla produzione di componenti conformi alle direttive europee RoHS e ELV. Per tali applicazioni e, vista l'alta tossicità del piombo dimostrata dalla ECHA (normativa REACH), EURAL suggerisce l'impiego di 2033 LEAD FREE avente pari caratteristiche meccaniche ed eccellente lavorabilità (truciolo finissimo).

Principali applicazioni: viteria, bulloneria, dadi, parti filettate.

Proprietà T3/T4 Lavorabilità all'utensile Anodizzazione protettiva Anodizzazione decorativa Anodizzazione dura Resistenza a corrosione atmosferica Resistenza a corrosione marina Saldabilità MIG - TIG Saldabilità a resistenza Saldabilità a brasatura Deformabilità plastica a freddo Deformabilità plastica a caldo

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

Composi	≤ 0,80 ≤ 0,80 ≤ 0,80 3,30 ÷ 4,60 0,50 ÷ 1,00 0,40 ÷ 1,80 ≤ 0,10 ≤ 0,20 ≤ 0,80 ≤ 0,20			
Si	≤ 0,80			
Fe	≤ 0,80			
Cu	3,30 ÷ 4,60			
Mn	0,50 ÷ 1,00			
Mg	0,40 ÷ 1,80			
Cr	≤ 0,10			
Ni	≤ 0,20			
Zn	≤ 0,80			
Ti	≤ 0,20			
Pb	0,80 ÷ 1,00			
Bi	≤ 0,20			
Sn	≤ 0,20			
Altri	Cias. 0,10 - Tot. 0,30			
Al	Resto			

Caratteristiche fi	siche	
Densità	Kg	2 05
Defisita	dm ³	2,85
Modulo di elasticità	MPa	71.000
Coefficiente di dilatazione termica	x10 ⁻⁶	22.5
Coefficiente di dilatazione termica	°C	23,5
Conducibilità termica a 20°C	W	140
Conducibilità termica a 20 C	mk	140
Resistività elettrica tipica a 20°C	Ω mm ²	0.057
nesistivita elettrica tipica a 20 C	m	0,057

Esempi di prodotti finiti realizzati con barre Eural

TO THE PARTY OF TH

	Caratteri	sticne meccar	nicne	minim	е	
			Rm	Rp0,2	Rp0,2	
	Stato	Diam. mm	MPa	MPa	Α%	Tipica
٩	Т3	≤ 30	370	240	7	95
Trafilato	Т3	$30 < D \le 80$	340	220	6	95
⊨	T351	≤ 80	370	240	5	95
_	T4, T4510, T4511	≤ 80	370	250	8	95
Estruso	T4, T4510, T4511	80 < D ≤ 200	340	220	8	95
ш	T4, T4510, T4511	$200 < D \le 250$	330	210	7	95

2077 by EURAL LEAD FREE

Conforme direttive: RoHS II, ELV, REACH

Campi di applicazione

2077 LEAD FREE by EURAL è la lega di alluminio con la migliore lavorabilità tra le leghe dure con altissime caratteristiche meccaniche. Sviluppata da Eural Gnutti, può sovraperformare leghe quali 2017, 2017A, 2014, 2014A, 2024 e 7020 di competere con 7075.

La sua eccellente lavorabilità all'utensile, garanzia di altissime produttività, non ha uguali tra le leghe dure.

Scelta ecologica

Da diversi anni la normativa RoHS II autorizza in deroga il contenuto di piombo nelle leghe di alluminio per un contenuto massimo pari a 0,4%. Tale limite è sempre stato oggetto di discussione per possibile abbassamento, soprattutto da quando la normativa europea REACH ne ha confermato la tossicità (oltre 0,1% - lista SVHC) e sta procedendo con la definizione dei nuovi valori massimi consentiti (significativamente più bassi). Eural è pronta ad ogni possibile scenario futuro con la lega 2077 LEAD FREE by EURAL in quanto priva di piombo.

Lega ad alto contenuto di alluminio da riciclo.

2077 LEAD FREE by EURAL è parte delle leghe ad alta lavorabilità senza piombo sviluppata dal dipartimento Ricerca e Sviluppo Eural e nata grazie all'inesauribile lungimiranza della famiglia Gnutti.

E' una lega che mancava sino ad oggi, una lega che combina altissime caratteristiche meccaniche ed una eccellente lavorabilità.

Alta lavorabilità

2077 LEAD FREE by EURAL è stata specificatamente studiata per poter essere lavorata su torni automatici ad alta velocità grazie alla sua tipica formazione di truciolo finissimo.

Senza stagno Esistono in co

Esistono in commercio leghe della serie 2000 alluminio + stagno (Sn), ma come ben noto questo è causa di fragilità e rottura dei pezzi lavorati quando sottoposti a stress o alte temperature (>160°C). Lo stagno per sua natura ha la tendenza a rompersi bruscamente senza che avvengano precedentemente deformazioni e snervamenti.

2077 LEAD FREE by EURAL non contiene stagno.

Alternativa a:

2077 LEAD FREE by EURAL è la migliore alternativa a molte leghe dure di alluminio quali 2017, 2017A, 2014, 2014A, 2024, 7020 e 7075. Inoltre, visto l'alto livello di snervamento (Rp0.2), può essere un'alternativa, a seconda dell'applicazione finale, ad alcuni acciai inossidabili (AISI 303/4/4L/316/L), ghisa (GH 350/500) ed ottone (CW608N R360).

Billette controllate a ultrasuoni

Tutti I semilavorati in 2077 LEAD FREE by EURAL sono prodotti da billette in Classe A controllate al 100% ad ultrasuoni (SAE AMS STD-2154)

RoHS & REACH ed altri metalli

Le imminenti restrizioni in massimo contenuto di piombo ammesso, interesseranno tutti i prodotti ottenuti da lavorazione meccanica anche di acciaio e ottone. Tali metalli, privati del piombo che ne garantiva una buona o discreta lavorabilità, non potranno più essere impiegati.

Per tutti questi casi, ad oggi, l'unica alternativa per lavorabilità è l'alluminio e la migliore lega disponibile è la 2077 LEAD FREE by EURAL.

Programma di produzione

2077 LEAD FREE by EURAL è disponibile sia trafilata che estrusa. Barre tonde trafilate Ø 10 – 76,2mm Stato metallurgico T6 Barre tonde estruse Ø 30 – 254mm Stati metallurgici T4, T4511, T6 o T6511

Disponibili anche barre quadre, piatte ed esagonali.

Ampia gamma di barre trafilate con tolleranze dimensionali h9.

2077 by EURAL LEAD FREE

Codice colore Giallo sabbia

PROGRAMMA DI PRODUZIONE

Unità: mm				•
Trafilata	10 ÷ 76,2	Da definire	Da definire	Da definire
Estrusa	30 ÷ 254	30 ÷ 165	Thick. 30 ÷ 127	-

According to EU directives:

2000/53/EU (ELV) - 2011/65/EU (RoHS II) Pronta alle imminenti restrizioni sul piombo in quanto senza piombo

PRESENTAZIONE

Questa lega ha caratteristiche meccaniche molto elevate, alta resistenza a fatica, buona attitudine allo stampaggio ed ottima lavorabilità su torni ad alta velocità.

La lega Eural 2077 è la prima e l'unica lega dura con caratteristiche superiori alla 2024, che garantisce una formazione del truciolo paragonabile alla 2011 e 2033, quindi altissima produttività, tolleranze più ristrette, migliore rugosità superficiale, maggior durata degli utensili.

Eural 2077 è la migliore alternativa alle leghe 2017, 2017A, 2014, 2014A, 2024, 7020, 7022. 7075.

Per le sue elevate caratteristiche ed ottima lavorabilità, può sostituire certi tipi di acciaio e ghisa.

Principali applicazioni: valvole, viti e bulloni, barre filettate, componenti strutturali ed alta resistenza per aviazione, automotive.

Propietà	•	Г6			T4	
Lavorabilità all'utensile			Γ			Γ
Anodizzazione protettiva						Ī
Anodizzazione decorativa			Γ			Ī
Anodizzazione dura			Γ			Γ
Resistenza a corrosione atmosferica			Γ			
Resistenza a corrosione marina			Γ			
Saldabilità MIG-TIG			Γ			ſ
Saldabilità a resistenza			Γ			ſ
Saldabilità a brasatura			Γ			
Deformabilità plastica a freddo						
Deformabilità plastica a caldo						ſ

Esempi di prodotti finiti realizzati con barre Eural

Caratteristiche meccaniche minim

Diam. mm

Rp0,2

MPa MPa

HBW

A% Tipica

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

Composiz	zione chimica
Si	0,40 ÷ 1,00
Fe	≤ 0,70
Cu	4,00 ÷ 5,00
Mn	0,60 ÷ 1,20
Mg	0,60 ÷ 1,20
Cr	≤ 0,20
Ni	≤ 0,20
Zn	≤ 0,25
Ti	≤ 0,15
Ag, Li, Zr	Cias. ≤ 0,15
Bi	0,20 ÷ 0,90
Altri	Cias. 0,05 Total 0,15
Al	Resto

siche	
Kg	- 2,81
dm ³	2,01
MPa	77.000
x10 ⁻⁶	- 22.0
°C	- 22,9
W	T6: 151
mk	T4: 171
Ω mm 2	T6: 0,045
m	T4: 0,052
	dm³ MPa x10-6 °C W mk Ω mm²

odulo di elasticita	IVIPa	77.000	Trafil	T6/T651	≤ 80	480	400	5	130
nte di dilatazione termica	x10 ⁻⁶	22,9		T4/T4511	≤ 75	400	270	10	105
tte di dilatazione terrinea	°C			T4/T4511	75 < D ≤ 150	390	260	9	105
ıcibilità termica a 20°C	W	T6: 151	0	T4/T4511	150 < D ≤ 200	370	240	8	105
icibilità terrinca a 20 C	mk	T4: 171	- Estruso	T4/T4511	200 < D ≤ 254	360	220	7	105
tà elettrica tipica a 20°C	Ω mm ²	T6: 0,045	й	T6/T6511	≤ 150	455	380	5	130
ta cictifica tipica a 20 C	m	T4: 0,052		T6/T6511	150 < D ≤ 200	420	280	8	120
				T6/T6511	200 < D ≤ 254	400	270	8	110
www.eural.com					*	HBW s	solo a sco	opo ir	ndicativo

2017A by EURAL

PROGRAMMA DI PRODUZIONE

Conforme direttive: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

Unità: mm	•			•
Trafilata	14 ÷ 76,2	20 ÷ 65	Spess. 12 ÷ 55	20 ÷ 63,5
Estrusa	30 ÷ 254	30 ÷ 165	Spess. 30 ÷ 127	-

PRESENTAZIONE

Questa lega presenta caratteristiche meccaniche elevate e ottima resistenza a fatica. Durante le lavorazioni meccaniche sviluppa però un truciolo lungo, per cui non è molto adatta ad essere lavorata su torni automatici.

Può essere sostituita da 2033 LEAD FREE o 2077 LEAD FREE, quest'ultima con caratteristiche meccaniche più elevate, entrambe soluzioni che possono garantire una significativa miglior lavorabilità e quindi una produttività più elevata.

Principali applicazioni: viteria e rivetteria, componenti ad alta resistenza strutturale nei settori della difesa e del trasporto aereo.

Proprietà	T3	/T4	
Lavorabilità all'utensile			
Anodizzazione protettiva			
Anodizzazione decorativa			
Anodizzazione dura			
Resistenza a corrosione atmosferica			
Resistenza a corrosione marina			
Saldabilità MIG-TIG			
Saldabilità a resistenza			
Saldabilità a brasatura			
Deformabilità plastica a freddo			
Deformabilità plastica a caldo			

Esempi di prodotti finiti realizzati con barre Eural

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

Composizione chimica				
Si	0,20 ÷ 0,80			
Fe	≤ 0,70			
Cu	3,50 ÷ 4,50			
Mn	0,40 ÷ 1,00			
Mg	0,40 ÷ 1,00			
Cr	≤ 0,10			
Ni				
Zn	≤ 0,25			
Zr+Ti	≤ 0,25			
Pb				
Bi				
Altri	Cias. 0,05 - Tot. 0,15			
ΔΙ	Resto			

Caratteristiche fisiche				
Kg	2.70			
dm ³	2,79			
MPa	75.000			
x10 ⁻⁶	22.6			
°C	23,6			
W	134			
mk	134			
Ω mm ²	0,051			
m	0,051			
	Kg dm³ MPa x10-6 °C W mk Ω mm²			

www.eura	-com

Caratteristiche meccaniche minime						
	Stato	Diam. mm	Rm MPa	Rp0,2 MPa	A%	HBW Tipica
Trafilato	Т3	≤ 80	400	250	10	105
Traf	T351	≤ 80	400	250	8	105
	T4, T4510, T4511	≤ 75	400	270	10	105
Estruso	T4, T4510, T4511	75 < D ≤ 150	390	260	9	105
Estr	T4, T4510, T4511	150 < D ≤ 200	370	240	8	105
	T4, T4510, T4511	200 < D ≤ 250	360	220	7	105

PROGRAMMA DI PRODUZIONE

Unità: mm				•
Trafilata	20 ÷ 76,2	-	-	_
Estrusa	30 ÷ 254	50 ÷ 165	Spess. 30 ÷ 127	-

Conforme direttive: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

PRESENTAZIONE

Questa lega presenta caratteristiche meccaniche elevate e ottima resistenza a fatica. Durante le lavorazioni meccaniche presenta tuttavia un truciolo molto lungo, per cui non è molto adatta ad essere lavorata su torni automatici.

Per una significativa miglior lavorabilità e caratteristiche meccaniche superiori, Eural suggerisce l'impiego di 2077 LEAD FREE.

Principali applicazioni: viteria e rivetteria, componenti ad alta resistenza strutturale nei settori della difesa e del trasporto aereo.

Proprietà Lavorabilità all'utensile Anodizzazione protettiva Anodizzazione decorativa Anodizzazione dura Resistenza a corrosione atmosferica Resistenza a corrosione marina Saldabilità MIG-TIG Saldabilità a resistenza Saldabilità a brasatura Deformabilità plastica a freddo Deformabilità plastica a caldo

Esempi di prodotti finiti realizzati con barre Eural

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

Composizione chimica				
Si	≤ 0,50			
Fe	≤ 0,50			
Cu	3,80 ÷ 4,90			
Mn	0,30 ÷ 0,90			
Mg	1,20 ÷ 1,80			
Cr	≤ 0,10			
Ni				
Zn	≤ 0,25			
Ti	≤ 0,15			
Pb				
Bi				
Altri	Cias. 0,05 - Tot. 0,15			
Al	Resto			

Caratteristiche fisiche				
Densità	Kg	2,79		
Delisita	dm³	2,79		
Modulo di elasticità	MPa	70.000		
Coefficiente di dilatazione termica	x10 ⁻⁶	22.1		
Coefficiente di dilatazione termica	°C	23,1		
Conducibilità termica a 20°C	W	120		
Conducibilità termica a 20 C	mk	120		
Resistività elettrica tipica a 20°C	Ω mm ²	0,057		
nesistivita elettrica tipica a 20 C	m	0,057		

	Caratteri	istiche mecca	niche	minim	ie	
	Stato	Diam. mm	Rm MPa	Rp0,2 MPa	A%	HBW Tipica
	T3	10 < D ≤ 80	425	290	9	120
	T351	≤ 80	425	310	8	120
Trafilato	Т6	≤ 80	425	315	5	125
Trafi	T651	≤ 80	425	315	4	125
	Т8	≤ 80	455	400	4	130
	T851	≤ 80	455	400	3	130
	T3, T3510, T3511	≤ 50	450	310	8	120
0	T3, T3510, T3511	$50 < D \le 100$	440	300	8	120
Estruso	T3, T3510, T3511	100 < D ≤ 200	420	280	8	120
Est	T3, T3510, T3511	200 < D ≤ 250	400	270	8	120
	T8, T8510, T8511	≤ 150	455	380	5	130

6026^{LF} by EURAL LEAD FREE

Conforme direttive: RoHS II, ELV, REACH

Campi di applicazione

6026^{LF} LEAD FREE by EURAL è molto versatile, grazie alle sue caratteristiche meccaniche medio alte, buona attitudine all'anodizzazione, buona saldabilità, buona attitudine allo stampaggio, buona resistenza alla corrosione. 6026^{LF} LEAD FREE by EURAL è consigliata per parti utilizzate in diversi settori industriali quali l'automotive, elettrico ed elettronico, valvole, oleoidraulica, pneumatica, arredamento e illuminotecnica.

Scelta ecologica

Da diversi anni la normativa RoHS II autorizza in deroga il contenuto di piombo nelle leghe di alluminio per un contenuto massimo pari a 0,4% sul peso. Tale limite è sempre stato oggetto di discussione per possibile abbassamento, soprattutto da quando la normativa europea REACH ne ha confermato la tossicità (oltre 0,1% - lista SVHC) e sta procedendo con la definizione dei nuovi valori massimi consentiti (significativamente più bassi). Eural Gnutti ha anticipato le future restrizioni di queste direttive europee creando la 6026^{LF} LEAD FREE by EURAL.

Lega ad alto contenuto di alluminio da riciclo.

La nascita della

6026^{LF} LEAD FREE by EURAL

6026^{LF} LEAD FREE by EURAL è una lega ecologica disegnata e sviluppata dai laboratori di ricerca e sviluppo Eural Gnutti S.p.A. al fine di soddisfare le più stringenti richieste in applicazioni critiche dell'automotive quali i sistemi frenanti.

Oggi la 6026^{LF} LEAD FREE by EURAL è approvata per numerose differenti applicazioni.

Alta lavorabilità

6026^{LF} LEAD FREE by EURAL è particolarmente adatta per essere lavorata su torni automatici ad alta velocità grazie ad un **truciolo molto fine**.

Senza stagno

Su molte leghe delle serie 6000 il piombo (Pb) è stato sostituito dallo stagno (Sn) che, come è stato dimostrato, è causa di fragilità e rottura sui pezzi lavorati quando sottoposti a stress o alte temperature (> 160°C).

Lo stagno per sua natura ha la pericolosa tendenza a rompersi bruscamente senza che avvengano precedentemente deformazioni e snervamenti.

6026^{LF} LEAD FREE by EURAL non contiene stagno.

Tutti i semilavorati 6026^{LF} LEAD FREE by EURAL sono fatti da billette controllate al 100% a ultrasuoni secondo SAE AMS-STD-2154 classe A.

Programma di produzione

6026^{LF} LEAD FREE by EURAL è disponibile sia trafilata che estrusa.

Le barre tonde trafilate vanno da 6 a 76,2 mm, stati metallurgici T6, T8 o T9. Le barre tonde estruse vanno da 30 a 254 mm, stato metallurgico T6.

Sono anche disponibili barre quadre, esagonali, piatte.

Inoltre abbiamo un'ampia gamma di barre trafilate con tolleranza h9.

Alternativa a:

6026^{LF} LEAD FREE by EURAL è la migliore alternativa a molte leghe di alluminio come la 2007, 2011, 2015, 2028, 2030, 2044, 6012, 6012A, 6020, 6021, 6023, 6028, 6033, 6040, 6041, 6042, 6061, 6065, 6082, 6262, 6064A, 6262A, 6351, 7020.

6026^{LF}LEAD FREE by EURAL è un'eccellente sostituta dell'ottone, grazie alla sua eccellente lavorabilità, buona attitudine allo stampaggio, caratteristiche meccaniche medio alte.

Inoltre, poiché la 6026^{LF} LEAD FREE by EURAL ha un peso specifico di 1/3 rispetto all'ottone, risulta estremamente conveniente.

Compatibilità nei capitolati

6026^{LF} LEAD FREE by EURAL è nata nel 2002, ed è stata registrata alla Aluminum Association e agli standard EN con un contenuto di piombo Pb \leq 0,4%.

6026^{LF} LEAD FREE by EURAL senza piombo quindi non necessita di variazioni nei capitolati in cui è già prevista la 6026.

Piombo Pb e stagno Sn possono essere presenti in tracce, entro i limiti dello 0,05%, come qualsiasi altro elemento chimico, come prescritto dalle norme internazionali.

6026^{LF} by EURAL **LEAD FREE**

Codice colore **EU** bianco

PROGRAMMA DI PRODUZIONE

Unità: mm				•
Trafilata	6 ÷ 76,2	10 ÷ 65	Spess. 12 ÷ 55	10 ÷ 63,5
Estrusa	30 ÷ 254	50 ÷ 165	Spess. 30 ÷ 157	-

Conforme direttive:

2000/53/EU (ELV) - 2011/65/EU (RoHS II) Pronta alle imminenti restrizioni sul piombo in quanto senza piombo

La lega 6026^{LF} LEAD FREE è la miglior opzione per lavorabilità dopo le recenti limitazioni RoHS (2018/740/EU) e REACH in tema di contenuto di piombo (Pb ≤ 0,1%). È particolarmente idonea alle lavorazioni ad alta velocità su torni automatici. 6026^{LF} LEAD FREE offre:

- Truciolo piccolo
- Caratteristiche meccaniche medio-alte
- Buona attitudine all'anodizzazione anche con spessori importanti
- Buona resistenza alla corrosione
- Bassa rugosità dopo tornitura
- Ottima anche per stampaggio

È decisamente soluzione migliore alle leghe di Alluminio+Stagno perché libera da limitazioni di impiego (parti soggette a forti sollecitazioni, basse o alte temperature). Può sostituire le leghe 2007, 2011, 2015, 2028, 2030, 2044, 6012, 6012A, 6020, 6021, 6023, 6028, 6033, 6040, 6041, 6042, 6061, 6065, 6082, 6262, 6064A, 6262A, 6351, 7020. settore automotive, elettrico ed elettronico, stampaggio a caldo, dadi, viti, bulloni, parti filettate, minuteria.

Proprietà	Т6	Т6		/T9
	10		10	/19
Lavorabilità all'utensile				
Anodizzazione protettiva				
Anodizzazione decorativa				
Anodizzazione dura				
Resistenza a corrosione atmosferica				
Resistenza a corrosione marina				
Saldabilità MIG - TIG				
Saldabilità a resistenza				
Saldabilità a brasatura				
Deformabilità plastica a freddo				
Deformabilità plastica a caldo				

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

Composizione chimica				
Si	0,60 ÷ 1,40			
Fe	≤ 0,70			
Cu	0,20 ÷ 0,50			
Mn	0,20 ÷ 1,00			
Mg	0,60 ÷ 1,20			
Cr	≤ 0,30			
Ni				
Zn	≤ 0,30			
Ti	≤ 0,20			
Sn	≤ 0,05			
Pb	≤ 0,05* (tracce)			
Bi	0,50 ÷ 1,50			
Altri	Cias. 0,05 - Tot. 0,15			
Al	Resto			

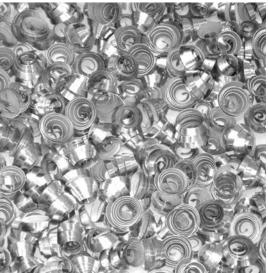
·
0,60 ÷ 1,40
≤ 0,70
0,20 ÷ 0,50
0,20 ÷ 1,00
0,60 ÷ 1,20
≤ 0,30
≤ 0,30
≤ 0,20
≤ 0,05
≤ 0,05* (tracce)
0,50 ÷ 1,50
Cias. 0,05 - Tot. 0,15
Resto

Caratteristiche fisiche			
Densità	Kg	2,72	
Densita	dm³		
Modulo di elasticità	MPa	75.500	
Coefficiente di dilatazione termica	x10 ⁻⁶	22.4	
Coefficiente di dilatazione termica	°C	23,4	
Conducibilità termica a 20°C	W	172	
Conducibilità termica a 20 C	mk	1/2	
Posistività alattrica tinica a 20°C	Ω mm 2	0.020	
Resistività elettrica tipica a 20°C	m	0,039	

Caratteristiche meccaniche minime					
Stato	Diam. mm	Rm MPa	Rp0,2 MPa	Α%	HBW Tipica
Т6	≤ 80	370	300	8	95
Т8	≤ 80	345	315	4	95
Т9	≤ 80	360	330	4	95
Т6	≤ 140	370	300	8	95
Т6	140 < D ≤ 200	340	250	8	90
Т6	200 < D ≤ 250	300	200	8	90
	Stato T6 T8 T9 T6 T6	Stato Diam. mm T6 ≤ 80 T8 ≤ 80 T9 ≤ 80 T6 ≤ 140 T6 140 < D ≤ 200	Stato Diam. mm Rm MPa T6 ≤ 80 370 T8 ≤ 80 345 T9 ≤ 80 360 T6 ≤ 140 370 T6 140 < D ≤ 200	Stato Diam.mm Rm MPa Rp0,2 MPa T6 ≤ 80 370 300 T8 ≤ 80 345 315 T9 ≤ 80 360 330 T6 ≤ 140 370 300 T6 140 < D ≤ 200	Stato Diam. mm Rm MPa MPa MPa A% T6 ≤ 80 370 300 8 T8 ≤ 80 345 315 4 T9 ≤ 80 360 330 4 T6 ≤ 140 370 300 8 T6 140 < D ≤ 200

6064A by EURAL

Codice colore EU giallo


Codice colore
USA arancio

PROGRAMMA DI PRODUZIONE

Conforme direttive: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

Unità: mm	•			•
Trafilata	6 ÷ 76,2	10 ÷ 65	Spess. 12 ÷ 55	10 ÷ 63,5
Estrusa	30 ÷ 254	50 ÷ 165	Spess. 30 ÷ 127	-

PRESENTAZIONE

Questa lega presenta una buona lavorabilità all'utensile ed elevate caratteristiche meccaniche. Inoltre presenta una buona resistenza alla corrosione e predisposizione all'anodizzazione dura, protettiva e decorativa.

In vista delle imminenti restrizioni sul piombo da parte degli regolatori europei, EURAL cosiglia il passaggio a 6026^{LF} LEAD FREE.

Principali applicazioni: particolari per impianti frenanti settore automotive, componenti strutturali per costruzioni civili, veicoli ferroviari e stradali pesanti.

Proprietà T6 T8/T9 Lavorabilità all'utensile Anodizzazione protettiva Anodizzazione decorativa Anodizzazione dura Resistenza a corrosione atmosferica Resistenza a corrosione marina Saldabilità MIG - TIG Saldabilità a resistenza Saldabilità a brasatura Deformabilità plastica a freddo Deformabilità plastica a caldo

Esempi di prodotti finiti realizzati con barre Eural

Caratteristiche meccaniche minim

Diam. mm

< 80

Rp0,2

310 260

HBW

A% Tipica

8 95

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

Composizione chimica			
Si	0,40 ÷ 0,80		
Fe	≤ 0,70		
Cu	0,15 ÷ 0,40		
Mn	≤ 0,15		
Mg	0,80 ÷ 1,20		
Cr	0,04 ÷ 0,14		
Ni			
Zn	≤ 0,25		
Ti	≤ 0,15		
Pb	0,20 ÷ 0,40		
Bi	0,40 ÷ 0,80		
Altri	Cias. 0,05 - Tot. 0,15		
Al	Resto		

Caratteristiche fisiche				
Densità	Kg	2 72		
Densita	dm³	2,72		
Modulo di elasticità	MPa	69.000		
Coefficiente di dilatazione termica	x10 ⁻⁶	22.4		
Coefficiente di dilatazione termica	°C	23,4		
Conducibilità termica a 20°C	W	172		
Conducibilità termica a 20 C	mk	1/2		
Resistività elettrica tipica a 20°C	Ω mm 2	0,039		
nesistivita elettrica tipica a 20 C	m	0,039		

		T8	≤ 80	345	315	4	95
ente di dilatazione termica $\frac{x10^{-6}}{\text{°C}}$ 23	3,4 jii	Т9	≤ 80	360	330	4	95
W	osn.	T6, T6510, T6511	≤ 140	310	260	8	95
	72 <u>‡</u>	T6, T6510, T6511	140 < D ≤ 250	260	240	8	90
vità elettrica tipica a 20°C $\frac{\Omega \text{ mm}^2}{\text{m}}$ 0,0	039						

Stato

T6

6262A by EURAL

Codice colore EU verde

PROGRAMMA DI PRODUZIONE

Unità: mm	•			
Trafilata	6 ÷ 76,2	10 ÷ 65	Spess. 12 ÷ 55	10 ÷ 63,5
Estrusa	30 ÷ 254	50 ÷ 165	Spess. 30 ÷ 127	_

Conforme direttive: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

PRESENTAZIONE

Questa lega è ecologica, non contiene piombo, presenta una buona lavorabilità all'utensile ed elevate caratteristiche meccaniche. Inoltre presenta una buona resistenza alla corrosione e predisposizione all'anodizzazione dura, protettiva e decorativa. È alternativa alle leghe 6012, 6262, 6020, 6023.

Principali applicazioni: lavorazioni meccaniche per torni ad alta velocità, particolari per applicazioni automotive, alberi per cambi automatici, valvole e frizioni, particolari idraulici.

NOTA: è particolarmente indicata per la realizzazione di particolari non sottoposti a sollecitazioni termiche estreme (max 160°C) ed è quindi idonea per particolari automotive come ad esempio alberi per cambi automatici.

Per applicazioni a temperature superiori, consigliamo l'utilizzo di 6026^{LF} LEAD FREE by EURAL.

T6	T8/T9
	T6

Esempi di prodotti finiti realizzati con barre Eural

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

Composizione chimica		
Si	0,40 ÷ 0,80	
Fe	≤ 0,70	
Cu	0,15 ÷ 0,40	
Mn	≤ 0,15	
Mg	0,80 ÷ 1,20	
Cr	0,04 ÷ 0,14	
Ni		
Zn	≤ 0,25	
Ti	≤ 0,10	
Bi	0,40 ÷ 0,90	
Sn	0,40 ÷ 1,00	
Altri	Cias. 0,05 - Tot. 0,15	

Resto

ΑI

Caratteristiche fisiche				
Densità	Kg	2 72		
Densita	dm³	2,72		
Modulo di elasticità	MPa	69.000		
Coefficiente di dilatazione termica	x10 ⁻⁶	22.4		
Coefficiente di dilatazione termica	°C	23,4		
Conducibilità termica a 20°C	W	172		
Conducibilità termica a 20 C	mk			
Resistività elettrica tipica a 20°C	Ω mm ²	0,038		
nesistivita elettrica tipica a 20 C	m	0,036		

а МРа	Α%	Tipica
240	10	-
315	4	-
330	4	-
240	10	75
	240 5 315	0 240 10 5 315 4 0 330 4

Caratteristiche meccaniche minime

Rm Rp0,2

HBW

PROGRAMMA DI PRODUZIONE

Conforme direttive: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

Unità: mm	•			•
Trafilata	6 ÷ 76,2	10 ÷ 65	Spess. 12 ÷ 55	10 ÷ 63,5
Estrusa	30 ÷ 254	30 ÷ 165	Spess. 30 ÷ 127	-

PRESENTAZIONE

Questa lega presenta caratteristiche meccaniche medie, ma alta resistenza alla corrosione e ottima saldabilità, stampabilità e attitudine all'anodizzazione.

Principali applicazioni: parti strutturali fortemente sollecitate per mezzi di trasporto terrestri e marini, barre laterali anti-impatto, telaio portiere, space frame e sub frame per auto, sistemi idraulici, scale e ponteggi, piattaforme, viteria e rivetteria, parti per impianti nucleari, industria alimentare.

Proprietà Lavorabilità all'utensile Anodizzazione protettiva Anodizzazione decorativa Anodizzazione dura Resistenza a corrosione atmosferica Resistenza a corrosione marina Saldabilità MIG - TIG Saldabilità a resistenza Saldabilità a brasatura Deformabilità plastica a freddo Deformabilità plastica a caldo

Legenda

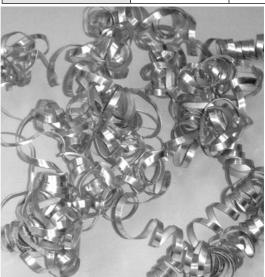
Ottimo	Buono	Sufficiente	Sconsigliato

Composizione chimica				
Si	0,70 ÷ 1,30			
Fe	≤ 0,50			
Cu	≤ 0,10			
Mn	0,40 ÷ 1,00			
Mg	0,60 ÷ 1,20			
Cr	≤ 0,25			
Ni				
Zn	≤ 0,20			
Ti	≤ 0,10			
Pb				
Bi				
Altri	Cias. 0,05 - Tot. 0,15			
Al	Resto			

Caratteristiche fisiche				
Densità	Kg	2,71		
Delisita	dm³	2,71		
Modulo di elasticità	MPa	69.000		
Coefficiente di dilatazione termica	x10 ⁻⁶	24		
Coefficiente di dilatazione termica	°C	24		
Conducibilità termica a 20°C	W	167		
Conducibilità termica a 20 C	mk	107		
Posistività alattrica tinica a 20°C	Ω mm 2	0.027		
Resistività elettrica tipica a 20°C	m	0,037		

Esempi di prodotti finiti real	lizzati con barre Eural	
	94	

Caratteristiche meccaniche minime						
			Rm	Rp0,2		HBW
	Stato	Diam. mm	MPa	MPa	A%	Tipica
Trafilato	Т6	≤ 80	310	255	10	95
0	T6	≤ 150	310	260	8	95
Estruso	Т6	150 < D ≤ 200	280	240	6	95
	T6	200 < D ≤ 250	270	200	6	95


Codice colore EU blu

PROGRAMMA DI PRODUZIONE

Unità: mm				•
Trafilata	6 ÷ 76,2	10 ÷ 65	Spess. 12 ÷ 55	10 ÷ 63,5
Estrusa	30 ÷ 254	50 ÷ 165	Spess. 30 ÷ 127	-

Conforme direttive: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

PRESENTAZIONE

Questa lega presenta caratteristiche meccaniche medie, ma alta resistenza alla corrosione e ottima saldabilità, stampabilità e attitudine all'anodizzazione.

Principali applicazioni: parti strutturali fortemente sollecitate per mezzi di trasporto terrestri e marini, barre laterali anti-impatto, telaio portiere, space frame e sub frame per auto, sistemi idraulici, scale e ponteggi, piattaforme, viteria e rivetteria, parti per impianti nucleari, industria alimentare.

Esempi di prodotti finiti realizzati con barre Eural

Legenda

Ottimo	Buono	Sufficiente	Sconsigliato

Composizione chimica								
Si	0,40 ÷ 0,80							
Fe	≤ 0,70							
Cu	0,15 ÷ 0,40							
Mn	≤ 0,15							
Mg	0,80 ÷ 1,20							
Cr	0,04 ÷ 0,35							
Ni								
Zn	≤ 0,25							
Ti	≤ 0,15							
Pb								
Bi								
Altri	Cias. 0,05 - Tot. 0,15							
ΔΙ	Resto							

Caratteristiche fisiche							
Densità	Kg	2,71					
	dm³	2,71					
Modulo di elasticità	MPa	69.000					
Coefficiente di dilatazione termica	x10 ⁻⁶	23,5					
Coefficiente di dilatazione termica	°C	23,5					
Conducibilità termica a 20°C	W	173					
Conducibilità termica a 20 C	mk	1/3					
Posictività alattrica tinica a 20°C	Ω mm 2	. 0.027					
Resistività elettrica tipica a 20°C	m	0,037					

1101011 01110	
www.eura	I.COIII

	Caratteristiche meccaniche minime										
			Rm		HBW						
	Stato	Diam. mm	MPa	MPa	A%	Tipica					
Estruso Trafilato	Т6	≤ 80	290	240	10	95					
Estruso	Т6	≤ 200	260	240	8	95					

Codice colore **EU** viola

Codice colore **USA** nero

<u>tukal</u> GNUTTI S.p.A

PROGRAMMA DI PRODUZIONE

Unità: mm Trafilata 25 ÷ 76,2 Estrusa 30 ÷ 254 50 ÷ 165 Spess. 30 ÷ 127

Conforme direttive: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

PRESENTAZIONE

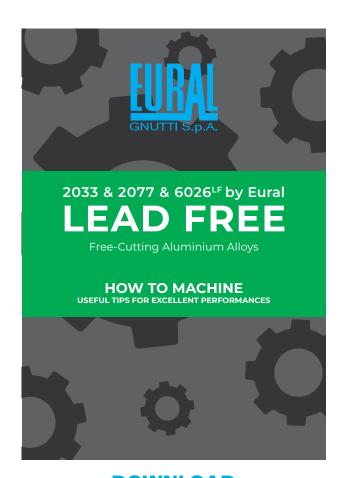
Questa lega presenta elevatissime caratteristiche meccaniche, alta resistenza a fatica. Inoltre presenta una buona resistenza alla corrosione e predisposizione all'anodizzazione dura, protettiva e decorativa.

Principali applicazioni: parti strutturali ad alta resistenza per l'industria meccanica, aerospaziale, difesa, settore moto e automotive.

Proprietà T6 Lavorabilità all'utensile Anodizzazione protettiva Anodizzazione decorativa Anodizzazione dura Resistenza a corrosione atmosferica Resistenza a corrosione marina Saldabilità MIG - TIG Saldabilità a resistenza Saldabilità a brasatura Deformabilità plastica a freddo Deformabilità plastica a caldo

Legenda

Composizione chimica							
Si	≤ 0,40						
Fe	≤ 0,50						
Cu	1,20 ÷ 2,00						
Mn	≤ 0,30						
Mg	2,10 ÷ 2,90						
Cr	0,18 ÷ 0,28						
Ni							
Zn	5,10 ÷ 6,10						
Ti	≤ 0,20						
Pb							
Bi							
Altri	Cias. 0,05 - Tot. 0,15						
Al	Resto						


Caratteristiche fisiche								
D	Kg	2.00						
Densità	dm ³	2,80						
Modulo di elasticità	MPa	72.000						
Coefficiente di dilatazione termica	x10 ⁻⁶	23,5						
Coefficiente di dilatazione termica	°C	23,5						
Conducibilità termica a 20°C	W	130						
Conducionità termica à 20 C	mk	130						
Resistività elettrica tinica a 20°C	Ω mm ²	0.052						
Resistività elettrica tipica a 20 C	m	0,032						
Resistività elettrica tipica a 20°C		0,052						

Caratteristiche meccaniche minime										
			Rm	Rp0,2		HBW				
	Stato	Diam. mm	MPa	MPa	A%	Tipica				
	T6	≤ 80	540	485	7	150				
Frafilato	T651	≤ 80	540	485	5	150				
Traf	T73	≤ 80	455	385	10	135				
·	T7351	≤ 80	455	385	8	135				
	T6, T6510, T6511	≤ 100	560	500	7	150				
	T6, T6510, T6511	$100 < D \le 150$	550	440	5	150				
osn	T6, T6510, T6511	$150 < D \le 200$	440	400	5	150				
Estruso	T73, T73510, T73511	≤ 75	475	405	7	135				
	T73, T73510, T73511	75 < D ≤ 100	470	390	6	135				
	T73, T73510, T73511	100 < D ≤ 150	440	360	6	135				

Nella guida "Consigli sulle lavorazioni":

- Cosa significa "Alta lavorabilità" e quanto una tale soluzione possa giocare a favore per un progetto di successo
- Come ottenere trucioli fini e abbattere I tempi ciclo
- Elementi rompi-truciolo, lubrificanti e refrigeranti, inserti per tornitura, foratura e fresatura
- Come cambia la formazione del truciolo al semplice cambio degli inserti di lavorazione sulle leghe 2033 & 2077 & 6026^{LF} LEAD FREE (senza piombo) by Eural.
- Parametri di lavorazione possibili sulle leghe ad alta lavorabilità LEAD FREE (senza piombo) by Eural

DOWNLOAD www.eural.com

2033 & 2077 & 6026^{LF} **LEAD FREE**

by Eural

"Consigli sulle lavorazioni"

EURAL è un produttore leader di mercato dal 1968. Uno dei fattori del suo grande successo è sempre stato l'essere molto vicino ai propri clienti, l'ascolto, la comprensione e la soddisfazione delle necessità tecniche e delle aspettative. Dopo 50 anni di supporto continuo al settore delle lavorazioni meccaniche, **EURAL** è ora in grado di creare nuove soluzioni per aiutare e migliorare il lavoro dei propri clienti.

Il personale **EURAL** viaggia in tutto il mondo ovunque sia richiesto il nostro supporto per comprendere, cooperare e condividere i benefici di usare i nostri prodotti.

Per queste ragioni, abbiamo realizzato una quida tecnica chiamata:

"Lavorazioni meccaniche - Consigli utili per prestazioni eccellenti".

Una guida piena di suggerimenti su come approcciare alle leghe ad alta lavorabilità senza piombo sviluppate da **EURAL**. Piena di tutta la nostra esperienza in questo settore.

EURAL fornisce alluminio con tecnologia.

Leghe ad alto contenuto di alluminio da riciclo.

Estrazione billette nella fonderia

Sistema automatico di controllo a ultrasuoni su tutta la lunghezza della billetta secondo classe "A" della norma SAE AMS-STD-2154

Particolare del magazzino barre

Pressa di estrusione inversa da 5500 ton.

Stampigliatura di logo Eural, codice lega e lotto di produzione su tutte le barre estruse

Ricerca e sviluppo

Laboratorio qualità

Laboratorio qualità

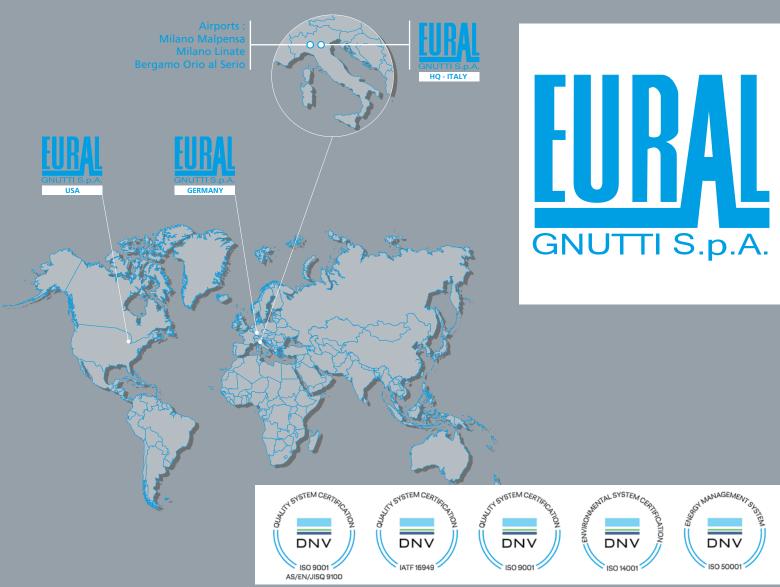
Fabbrica di estrusione Eural Gnutti a Rovato

Fonderia Eural Gnutti a Pontevico

Designazioni leghe per Nazioni e produttori

LEGHE	AA	EN	EN (CS)	ASTM	BS	BS(OLD)	DIN	WNR	JIS	JIS(OLD)	NF	NF(OLD)	SFS
	Intl.	Intl.	Intl.	USA	GB	GB	DE	DE	JP	JP	FR	FR	FI
2033			Al Cu2,5BiMnMg										
2011	2011	2011	Al Cu6BiPb	2011	2011	FC1	AlCuBiPb	3.1655	A2011		2011	A-U5PbBi	
2030	2030	2030	Al Cu4PbMg	\			~AlCuMgPb				2030	A-U4Pb	
2007	2007	2007	Al Cu4PbMgMn	\			AlCuMgPb	3.1645				~ A-U4Pb	
2077			Al Cu4,5MnMgBi										
2017A	2017A	2017A	Al Cu4MgSi(A)	~2017	2017A		AlCuMg1	3.1325	~A2017	A3x2	2017A	A-U4G	
2024	2024	2024	Al Cu4Mg1	2024	2024	2L97	AlCuMg2	3.1355	A2024	A3x4	2024	A-U4G1	
6026	6026	6026	Al MgSiBi	6026									
6064A	6064A	6064A	Al Mg1SiBi	\									
6061	6061	6061	Al Mg1SiCu	6061	6061	H20	AlMg1SiCu	3.3211	A6061	A2x4	6061	A-GSUC	
6082	6082	6082	Al Si1MgMn		6082	H30	AlMgSi1	3.2315			6082	A-GSM0.7	2593
6262	6262	6262	Al Mg1SiPb	6262									
6262A	6262A	6262A	Al Mg1SiSn	\									
7075	7075	7075	Al Zn5,5MgCu	7075	7075	2L95	AlZnMgCu1,5	3.4365	A7075	A34x6	7075	A-Z5GU	

SNCH	SS	UNI	UNI(OLD)	UNS	NS	UNE	ASV	ALUSUISSE	CSA(OLD)	GOST(OLD)
CH	SE	IT	IT							
AlCu6BiPb	4355	9002/5	6362	A92011		L-3192		2500	CB60	
AlCu4MgPb				A92030						
AlCu4MgPb	4335	9002/8				L-3121		2118		
		9002/2	3579	~A92017		L-3120		2100	CM41	D1/V65
AlCu4Mg1,5		9002/4	3583	A92024		L-3140		2150	CG42	D16
		9006/2	6170	A96061		L-3420	2079	6061	GS11N	AD33/AV
AlMgSi1Mn	4212	~9006/4	3571		17305	L-3451	2005	6112	SG11R	AD35
AlZn6MgCu1,5		9007/2	3735	A97075		L-3710	2082	7215	ZG62	B95(V95)
	CH AlCu6BiPb AlCu4MgPb AlCu4MgPb AlCu4Mg1,5 AlMgSi1Mn	CH SE AlCu6BiPb 4355 AlCu4MgPb AlCu4MgPb 4335 AlCu4Mg1,5 AlMgSi1Mn 4212	CH SE IT AlCu6BiPb 4355 9002/5 AlCu4MgPb AlCu4MgPb 4335 9002/8 9002/2 AlCu4Mg1,5 9002/4 AlCu4Mg1,5 9006/2 AlMgSi1Mn 4212 ~9006/4	CH SE IT IT AlCu6BiPb 4355 9002/5 6362 AlCu4MgPb 4335 9002/8 AlCu4MgPb 9002/2 3579 AlCu4Mg1,5 9002/4 3583 9006/2 6170 AlMgSi1Mn 4212 ~9006/4 3571	CH SE IT IT AlCu6BiPb 4355 9002/5 6362 A92011 AlCu4MgPb A92030 A92030 AlCu4MgPb 4335 9002/8 -A92017 AlCu4Mg1,5 9002/4 3583 A92024 AlCu4Mg1,5 9006/2 6170 A96061 AlMgSi1Mn 4212 ~9006/4 3571	CH SE IT IT AlCu6BiPb 4355 9002/5 6362 A92011 AlCu4MgPb A92030 A92030 AlCu4MgPb 4335 9002/8 -A92017 AlCu4Mg1,5 9002/2 3579 -A92017 AlCu4Mg1,5 9002/4 3583 A92024 AlMgSi1Mn 4212 ~9006/2 6170 A96061 AlMgSi1Mn 4212 ~9006/4 3571 17305	CH SE IT IT AlCu6BiPb 4355 9002/5 6362 A92011 L-3192 AlCu4MgPb A92030 L-3121 AlCu4MgPb 4335 9002/8 L-3121 AlCu4Mg1,5 9002/2 3579 ~A92017 L-3120 AlCu4Mg1,5 9002/4 3583 A92024 L-3140 AlMgSi1Mn 4212 ~9006/2 6170 A96061 L-3420 AlMgSi1Mn 4212 ~9006/4 3571 17305 L-3451	CH SE IT IT AlCu6BiPb 4355 9002/5 6362 A92011 L-3192 AlCu4MgPb A92030 L-3121 L-3121 AlCu4MgPb 4335 9002/8 L-3120 L-3120 AlCu4Mg1,5 9002/4 3583 A92024 L-3140 AlCu4Mg1,5 9006/2 6170 A96061 L-3420 2079 AlMgSi1Mn 4212 ~9006/4 3571 17305 L-3451 2005	CH SE IT IT AlCu6BiPb 4355 9002/5 6362 A92011 L-3192 2500 AlCu4MgPb A92030 L-3121 2118 AlCu4MgPb 4335 9002/8 L-3121 2118 AlCu4Mg1,5 9002/2 3579 ~A92017 L-3120 2100 AlCu4Mg1,5 9002/4 3583 A92024 L-3140 2150 AlMgSi1Mn 4212 ~9006/2 6170 A96061 L-3420 2079 6061 AlMgSi1Mn 4212 ~9006/4 3571 17305 L-3451 2005 6112	CH SE IT IT AlCu6BiPb 4355 9002/5 6362 A92011 L-3192 2500 CB60 AlCu4MgPb A92030 L-3121 2118 2118 2118 2118 2118 2100 CM41 2100 CM41 2150 CG42 2150 CG42 2150 CG42 2150 CG42 2079 6061 GS11N AlMgSi1Mn 4212 ~9006/4 3571 17305 L-3451 2005 6112 SG11R



Peso delle barre di alluminio in Kg/metro lineare

Calcolato sulla Massa Volumetrica (2,8 Kg/dm³)

mm.			•	mm.	•		•	mm.			•
5	0,0 55	-	-	45	4,552	5,670	4,910	85	15,888	20,230	17,519
6	0,079	-	-	46	4,653	5,924	5,131	86	16,264	20,708	17,934
7	0,107	-	-	47	4,857	6,185	5,356	87	16,645	21,193	18,353
8	0,140	0,179	0,155	48	5,066	6,451	5,586	88	17,030	21,683	18,778
9	0,178	0,226	0,196	49	5,280	6,722	5,822	89	17,419	22,178	19,207
10	0,219	0,280	0,242	50	5,497	7,000	6,062	90	17,813	22,680	19,641
11	0,266	0,338	0,293	51	5,719	7,282	6,307	91	18,210	23,186	20,080
12	0,316	0,403	0,349	52	5,946	7,571	6,556	92	18,613	23,649	20,524
13	0,371	0,473	0,409	53	6,177	7,865	6,811	93	19,020	24,217	20,972
14	0,431	0,548	0,475	54	6,412	8,165	7,071	94	19,413	24,740	21,426
15	0,494	0,630	0,545	55	6,652	8,470	7,335	95	19,837	25,270	21,884
16	0,562	0,716	0,620	56	6,896	8,780	7,604	96	20,267	25,805	22,347
17	0,635	0,809	0,700	57	7,144	9,097	7,878	97	20,691	26,345	22,815
18	0,712	0,907	0,785	58	7,397	9,419	8,157	98	21,120	26,891	23,288
19	0,793	1,011	0,875	59	7,655	9,746	8,441	99	21,553	27,442	23,766
20	0,879	1,120	0,969	60	7,916	10,080	8,729	100	21,991	28,000	24,248
21	0,969	1,234	1,069	61	8,183	10,418	9,023	105	24,245	30,870	-
22	1,064	1,355	1,173	62	8,453	10,763	9,321	110	26,609	33,880	-
23	1,163	1,481	1,282	63	8,728	11,113	9,624	115	29,083	37,030	-
24	1,266	1,613	1,396	64	9,007	11,468	9,932	120	31,667	40,320	-
25	1,374	1,750	1,515	65	9,291	11,830	10,245	125	34,344	43,750	-
26	1,486	1,893	1,679	66	9,579	12,196	10,562	130	37,165	47,320	-
27	1,603	2,041	1,767	67	9,872	12,569	10,885	135	40,078	51,000	-
28	1,724	2,195	1,901	68	10,169	12,947	11,212	140	43,102	54,880	-
29	1,849	2,355	2,039	69	10,470	13,330	11,544	145	46,236	58,870	-
30	1,979	2,520	2,182	70	10,775	13,720	11,881	150	49,480	63,000	-
31	2,113	2,690	2,330	71	11,096	14,115	12,223	155	52,833	67,270	-
32	2,251	2,867	2,483	72	11,400	14,515	12,570	160	56,297	71,680	-
33	2,394	3,049	2,640	73	11,719	14,921	12,922	165	59,870	76,230	-
34	2,542	3,236	2,803	74	12,042	15,332	13,278	170	63,554	80,920	-
35	2,693	3,430	2,970	75	12,370	15,750	13,639	175	67,347	-	-
36	2,850	3,628	3,142	76	12,702	16,173	14,006	180	71,251	-	-
37	3,010	3,833	3,319	77	13,038	16,601	14,377	190	79,347	-	-
38	3,175	4,043	3,501	78	13,379	17,035	14,753	200	87,920	-	-
39	3,344	4,258	3,688	79	13,724	17,475	15,133	210	96,980	-	-
40	3,518	4,480	3,879	80	14,074	17,920	15,519	220	106,43	-	-
41	3,696	4,706	4,076	81	14,428	18,370	15,909	225	111,33	-	-
42	3,879	4,939	4,277	82	14,786	18,827	16,305	230	116,33	-	-
43	4,066	5,177	4,483	83	15,149	19,290	16,705	240	126,66	-	-
44	4,257	5,420	4,694	84	15,517	19,756	17,109	250	137,44	-	-
										-	

EURAL GNUTTI S.p.A.

25038 Rovato (Brescia) Italy Via S. Andrea, 3 Capitale sociale - Company's capital € 10.000.000 Partita IVA - Vat Reg. IT 00566100988

Vendita barre - Bars department: Amministrazione - Administration: Fonderia - Foundry:

Fax +39 030 7701228 - sections@eural.com Fax +39 030 7702847 - bars@eural.com Fax +39 030 7702837 - accounts@eural.com Fax+ 39 030 9930036 - foundry@eural.com

Eural USA Inc.

2801 N Wolcott Ave. Unit S 60657 Chicago, IL - **USA** usa@eural.com Tel/Ph. +1 (312) 6830668

Eural Deutschland GmbH

Friedrichstrasse 15 70174 Stuttgart - **Germany** germany@eural.com Tel/Ph. +49 (173) 6155362