

Dear Customer,

Since 1968, our company has manufactured semis in aluminum and occupied a position of worldwide leadership in bars and rods. Our production facilities include the foundry located in Pontevico, Brescia (Italy) and the extrusion plant in Rovato, Brescia (Italy). With a workforce of about 400 employees and built on an area covering a total of 4,305,000 sq.ft., Eural possesses the latest state-of-the-art foundry and extrusion equipment.

Our passion for our job pushes us to always achieve excellence for our products. We constantly invest in research and development and in the latest technologies so our customers receive the maximum for their applications. The choice of the correct alloy is a crucial passage that might determine the success of a product. For this reason, we have produced this catalogue that gives you for each alloy a detailed technical sheet with all the parameters you need. International standards leave the manufacturers too wide a margin of variability for creating each alloy. In practice this means that, for each alloy, you can face significant differences in mechanical properties, with not always acceptable results on your final products. In Eural we have generated a code that is more stringent than the international regulations and restricts further the oscillations within the same alloy, constantly guaranteeing you homogeneous products in the course of time, to always get the best mechanical properties.

We received in 2008 the certification ISO/TS 16949.2002 that guarantees an extremely high quality system, and we have already implemented a modern automatic system of ultrasonic tests that certifies the absolute integrity of each and every billet that we produce in our foundry, according to class "A" of SAE AMS-STD-2154 regulation. In Eural each production process is subject to quality controls, which go beyond standard requirements.

We firmly believe that the dialogue with you, through our technical and commercial staff, is fundamental to support you in the choice of the aluminum alloy that best suits to your needs. You can always count on our experience and our availability.

Doct. Sergio Gnutti President Eural Gnutti S.p.A.

Fifty years after its foundation, EURAL Gnutti S.p.A. is the largest producer for cold-finished/drawn bars in the world. EURAL bases its success on this specific product and on developing free-cutting aluminum alloys for machine-shops. EURAL offers services to all its customers that makes the difference on all the competitors:

- Assistance on choosing the proper alloy per each machining need
- Trade missions in more than 50 Countries
- Technicians supporting end-users customers worldwide to find out the best machining parameters and reach the best ever performances by using EURAL's bars
- Technical advice on managing every single step of the process, from planning to production.

EURAL - RESEARCH & DEVELOPMENT

EURAL Gnutti S.p.A. allocates a significant and ever-growing quote of investments for the development of new solutions for the industry.

New alloys **2033 LEAD FREE** and **6026 LEAD FREE** are the results after years of studies by Research & Development department. The latest releases of international regulations (RoHS, ELV, REACH) are moving to the limitation of lead (Pb) in aluminium alloys as it is considered dangerous to human health and toxic for the environment.

These new solutions, compliant to the most restrictive limitations, do not affect machinability of EURAL's bars guaranteeing productivity and quality without compromises.

2033 by EURAL LEAD FREE

FURAL GNUTTI S.p.A.

According to:

RoHS II, ELV, REACH directives

Applications

2033 LEAD FREE by EURAL is an alloy of multiple potential applications; it gives an excellent machinability thanks to a very thin chip forming, high mechanical properties, better anodizing and weldability attitude when compared to alloys 2011, 2007, 2030.

2033 LEAD FREE by EURAL is also suggested as an alternative to alloys 2011, 2007, 2030 after latest RoHS/REACH restrictions (Pb \leq 0.1%).

RoHS and REACH

The latest RoHS directive (2018/740/EU) reduces the limit of lead allowed in aluminum alloys for machining purposes To 0.1% starting from 05/18/2021.

REACH has recently mentioned lead in SVHC list as toxic element for human health and subject to specific authorization whenever its presence is more than 0.1%.

Aluminum alloy

EURAL Gnutti SpA is ready with alloy 2033 LEAD FREE by EURAL.

2033 LEAD FREE by EURAL is the result of long and accurate work by EURAL Research & Development Department in order to make available an aluminum alloy with high machinability that offers more benefits than those in the market today.

High Machinability

2033 LEAD FREE by EURAL has been developed specifically for being machined on high-speed automatic lathes thanks to its excellent chip forming performance.

Production range

2033 LEAD FREE by EURAL is available both as drawn and extruded condition. Drawn round bars Ø .197" - 3" Tempers T3, T351 and T8. Extruded round bars Ø 1.181" - 10" Tempers T6

Available also in square, flat, and hexagonal bars.

A wide range of drawn bars are also available in h9 tolerance.

No tin

Today there are several alloys from 2000 series aluminum + tin (Sn) which, as is well known, causes weakness and cracking of machined parts when submitted to stress, low or high temperatures (< 55°F or > 320°F).

Tin, due to its brittle nature, has the dangerous tendency to suddenly break without significant previous deformation (strain).

2033 LEAD FREE by EURAL does not contain tin.

Alternative alloy to:

2033 LEAD FREE by EURAL is the best alternative to several alloys such as 2007, 2030, 2011, 2017, 2028, 2028A, 2041, 2044, 7020.

Ultrasonic tested billets

All semi-finished products in 2033 LEAD FREE by EURAL are made by Class A ultrasonic tested billets (SAE AMS STD 2154).

RoHS and other metals - Pb≤ 0.1%

The latest restrictions on lead (RoHS Pb \leq 0.1) concern also those products made from machining of steel and brass. Steel from Pb \leq 0.35 to Pb \leq 0.1 Brass from Pb \leq 4 to Pb \leq 0.1 For these metals today the only alternative for machinability is aluminum and the best option is 2033 LEAD FREE by EURAL

2033 by EURAL LEAD FREE

Color code EU pink

PRODUCTION PROGRAM

Unit: in				•
Drawn	.197" - 3"	.394" - 2.559"	Thick .472" - 2.165"	.394" - 2.5"
Extruded	1.181" - 10"	1.181" - 6.5"	Thick 1.181" - 5"	-

According to EU directives:

2000/53/EU (ELV) - 2018/740/EU (RoHS II)

PRESENTATION

This alloy has been developed by EURAL and it is one of the best for high speed automatic lathes. It gives the following advantages:

- Easy machining with any tool
- Excellent chip forming performance (thin chip)
- Longer life tools
- · High mechanical properties
- Better anodizing and weldability attitude compared to alloys 2011, 2007, 2030.

This alloy does not contain lead or tin and is therefore the best solution for the production of parts under the latest restriction on this topic (2018/740/EU RoHS: $Pb \le 0.1$ starting from 05/18/2021).

Main applications: automotive industry, electric and electronic industry, precision machining, defense, forging, screws, bolts, nuts, threaded parts of thin thickness.

Properties		3/ T 6	T8		
Machinability					
Protective anodizing					
Decorative anodizing					
Hard anodizing					
Resistance to atmospheric corrosion					
Resistance to marine corrosion					
MIG-TIG weldability					
At resistance weldability					
Brazing weldability					
Plastic formability when cold					
Plastic formability when hot					

Samples of finished products made of Eural bars

Legend

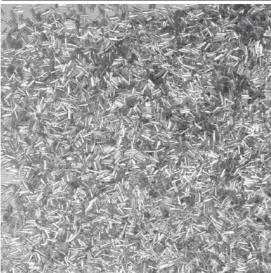
Excellent	Good	Acceptable	Not recommended

Chemical	composition
Si	0.10 - 1.20
Fe	≤ 0.70
Cu	2.20 - 2.70
Mn	0.40 - 1.00
Mg	0.20 - 0.60
Cr	≤ 0.15
Ni	≤ 0.15
Zn	≤ 0.50
Ti	≤ 0.10
Bi	0.05 - 0.80
Others	Each 0.05 Total 0.15

Remainder

Physical properties					
Donoitu	lb	1001			
Density	in ²	1001			
Modulus of elasticity	Ksi	10.2			
Coefficient of thermal expension	x10-6	- 12.7			
Coefficient of thermal expansion	°F	- 12.7			
Thermal conductivity at 68°F	Btu	T3: 86.7			
Thermal conductivity at 66 F	ft h °F	T8: 99.4			
Typical alactrical registryity at 60°E	Ω mm ²	T6: 0.044			
Typical electrical resistivity at 68°F	m	T8: 0.045			
·					

	Minimum mechanical properties						
			Rm		Rp0.2		
	Temper	Diam. in	Ksi	Ksi	A%	Typical	
	Т3	≤ 1.2"	53.7	34.8	7	100	
Drawn	Т3	1.2" < D ≤ 3"	49.3	31.9	7	100	
Dra	T351	≤ 3"	53.7	34.8	5	100	
	Т8	≤ 3"	53.7	39.2	8	100	
ded	Т6	≤ 3"	53.7	36.3	8	100	
Extruded	Т6	3" < D ≤ 10"	49.3	31.9	8	100	


Color code brown

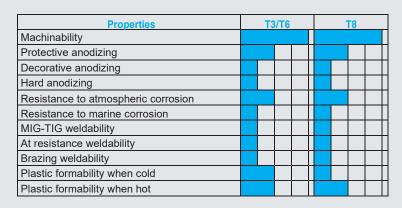
PRODUCTION PROGRAM

Unit: in				•
Drawn	0.197 - 3	0.394 - 2.559	Thick. 0.472 - 2.165	0.394 - 2.5
Extruded	1.181 - 10	1.181 - 6.5	Thick. 1.181 - 5	-

According to EU directives: 2000/53/EU (ELV) – 2011/65/EU (RoHS II)

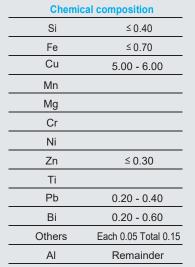
DDECENTATION

This alloy is the most often selected for high speed automatic lathes.


It offers the following advantages:

- · easy machining with any equipment;
- · cutting stress lower than most of other alloys;
- longer life of cutting tools;
- · cutting area always clean due to very thin chip;
- high mechanical properties;
- possibility to anodize finished parts in several colors *.

Main applications: screws, bolts, nuts, threaded bars.


* To get an optimal surface finishing of anodized pieces, we suggest to use suitable lubricants during machining.

Samples of finished products made of Eural bars

Physical properties					
Density	lb in ³	0.1022			
Modulus of elasticity	ksi	10.152			
Coeffi cient of thermal expansion	x10 ⁻⁶ °F	12.7			
Thermal conductivity at 60°F	Btu	T3: 86.7			
Thermal conductivity at 68°F	ft h °F	T8: 98.2			
Typical algoritical registry its at CO°F	$\Omega \text{ mm}^2$	T3: 0.038			
Typical electrical resistivity at 68°F	m	T8: 0.043			

_						
	Miı	nimum mechani	ical proj	perties	5	
			UTS	YTS		HBW
	Temper	Diam. in	ksi	ksi	A%	Typica
	Т3	≤ 1.5	46.4	39.2	10	90
Drawn	Т3	1.5 < D ≤ 2	43.5	36.3	10	90
Dra	Т3	2 < D ≤ 3	40.6	30.5	10	90
	Т8	≤3	53.7	39.2	8	115
papr	T6	≤ 3	45.0	33.4	8	110
Extruded	T6	3 < D ≤ 8	42.8	28.3	6	110

Meets the requirements of alloy 2030 (EN AW2030)

PRODUCTION PROGRAM

Unit: in				•	
Drawn	0.551 - 3	0.787 - 2.559	Thick. 0.472 - 2.165	0.787 - 2.5	
Extruded	1.181 - 10	1.181 - 6.5	Thick. 1.181 - 5	-	

PRESENTATION
Among aluminum alloys for high speed automatic lathes, 2030 and 2007 have the highest mechanical characteristics.

This alloy is the most often selected when it is required to have a good combination of machinability and high mechanical properties. It has low corrosion resistance.

Main applications: screws, bolts, nuts, threaded bars.

Samples of finished products made of Eural bars

Properties T3/T4			
Machinability			
Protective anodizing			
Decorative anodizing			
Hard anodizing			
Resistance to atmospheric corrosion			
Resistance to marine corrosion			
MIG-TIG weldability			
At resistance weldability			
Brazing weldability			
Plastic formability when cold			
Plastic formability when hot			

	<u> </u>
Si	≤ 0.80
Fe	≤ 0.70
Cu	3.30 - 4.50
Mn	0.20 - 1.00
Mg	0.50 - 1.30
Cr	≤ 0.10
Ni	
Zn	≤ 0.50
Ti	≤ 0.20
Pb	0.80 - 1.00
Bi	≤ 0.20
Sn	
Others	Each 0.10 Total 0.30

Remainder

Chemical composition

Physical properties			
Density	lb	0.103	
Density	in ³	0.103	
Modulus of elasticity	ksi	10,298	
Coeffi cient of thermal expansion	x10 ⁻⁶ °F	13.1	
Thermal conductivity at 68°F	Btu	80.4	
	ft h °F	00.4	
Typical electrical resistivity at 68°F	Ω mm ²	0.057	
ypical electrical resistivity at 00 F	m	0.037	

	1					Co	
		Minimu	m mechanio	cal pr	operti	es	
103		Temper	Diam. in	UTS ksi	YTS ksi	A%	HBW Typical
298		Т3	≤ 1.2	53.7	34.8	7	115
Drawn		Т3	1.2 < D ≤ 3	49.3	31.9	6	115
13.1	_	T351	≤ 3	53.7	34.8	5	115
	- p	T4, T4510, T4511	≤ 3	53.7	36.3	8	115
30.4	Extruded	T4, T4510, T4511	3 < D ≤ 8	49.3	31.9	8	115
0.57	ш́	T4, T4510, T4511	8 < D ≤ 10	47.9	30.5	7	115
057							

2017A by EURAL

Meets the requirements of alloy 2017

PRODUCTION PROGRAM

According to EU directives: 2000/53/EU (ELV) – 2011/65/EU (RoHS II)

_	The Decision of the Contract o					
	Unit: in				•	
	Drawn	0.551 - 3	0.787 - 2.559	Thick. 0.472 - 2.165	0.787 - 2.5	
	Extruded	1.181 - 10	1.181 - 6.5	Thick. 1.181 - 5	-	

PRESENTATION

This alloy has high mechanical properties and excellent resistance to fatigue. During machining, it creates quite long chips, therefore it is not well suited for automatic lathes.

It can be replaced by 2030, which has the same mechanical properties but has better machinability, allowing higher productivity.

Main applications: screws and bolts, high structural resistance components for aviation and defense.

Samples of finished products made of Eural bars

Properties		T3/T4		
Machinability				
Protective anodizing				
Decorative anodizing				
Hard anodizing				
Resistance to atmospheric corrosion				
Resistance to marine corrosion				
MIG-TIG weldability				
At resistance weldability				
Brazing weldability				
Plastic formability when cold				
Plastic formability when hot				

Chemical composition			
Si	0.20 - 0.80		
Fe	≤ 0.70		
Cu	3.50 - 4.50		
Mn	0.40 - 1.00		
Mg	0.40 - 1.00		
Cr	≤ 0.10		
Ni			
Zn	≤ 0.25		
Zr+Ti	≤ 0.25		
Pb			
Bi			
Others	Each 0.05 Total 0.15		
Al	Remainder		

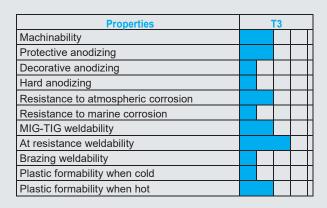
Chemical composition

Physical properties			
Donoity	lb	0.1008	
Density	in ³	0.1006	
Modulus of elasticity	ksi	10,878	
Coefficient of thermal expansion	x10 ⁻⁶	40.4	
Coeffi cient of thermal expansion	°F	13.1	
Thormal conductivity at 60°E	Btu	77.0	
Thermal conductivity at 68°F	ft h °F	77.0	
Typical algerrical registryity at 60°E	Ω mm 2	0.051	
Typical electrical resistivity at 68°F	m	0.051	

	Minimum mechanical properties					
			UTS YTS		HBW	
	Temper	Diam. in	ksi ksi	A%	Typica	
IWI	Т3	≤ 3	58.0 36.3	10	105	
Drawn	T351	≤ 3	58.0 36.3	8	105	
	T4, T4510, T4511	≤ 3	58.0 39.2	10	105	
papr	T4, T4510, T4511	3 < D ≤ 6	56.6 37.7	9	105	
Extruded	T4, T4510, T4511	6 < D ≤ 8	53.7 34.8	8	105	
	T4, T4510, T4511	8 < D ≤ 10	52.2 31.9	7	105	

Color code

PRODUCTION PROGRAM


Unit: in				•
Drawn	0.787 - 3	-	-	-
Extruded	1.181 - 10	2 - 6.5	Thick. 1.181 - 5	-

According to EU directives: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

This alloy has high mechanical properties and excellent resistance to fatigue. During machining, it creates quite long chips, therefore it is not well suited for automatic lathes.

Main applications; screws and bolts, high structural resistance components for aviation and defense.

Si

Fe

Cu

Mn

Mg

Cr Ni

Zn Ti

Pb Bi

Others ΑI

Excellent	Good	Acce

≤ 0.50

≤ 0.50

Each 0.05 Total 0.15

Remainder

Chemical composition

≤ 0.50	_
3.80 - 4.90	
0.30 - 0.90	
1.20 - 1.80	
≤ 0.10	_
≤ 0.25	_
≤ 0.15	

Physical properties					
Donaity	lb	0.1008			
Density	in ³	0.1006			
Modulus of elasticity	ksi	10,153			
Coefficient of thermal expension	x10 ⁻⁶	40.0			
Coeffi cient of thermal expansion	°F	12.8			
Thermal conductivity at 60°F	Btu	68.9			
Thermal conductivity at 68°F	ft h °F	00.9			
Typical cleatrical registivity at 60°E	Ω mm ²	0.057			
Typical electrical resistivity at 68°F	m	0.057			

Samples of finished products made of Eural bars

	Minimum mechanical properties						
			UTS	YTS		HBW	
	Temper	Diam. in	ksi	ksi	A%	Typica	
	Т3	≤ 3	61.6	42.1	9	120	
	T351	≤ 3	61.6	45	8	120	
Drawn	T6	≤ 3	61.6	45.7	5	125	
Dra	T651	≤ 3	61.6	45.7	4	125	
	Т8	≤ 3	66	58	4	130	
	T851	≤ 3	66	58	3	130	
	T3, T3510, T3511	≤ 2	65.3	45	8	120	
b	T3, T3510, T3511	$2 < D \le 4$	63.8	43.5	8	120	
Extruded	T3, T3510, T3511	4 < D ≤8	60.9	40.6	8	120	
Ë	T3, T3510, T3511	8 < D ≤ 10	58	39.2	8	120	
	T8, T8510, T8511	≤ 6	66	55.1	5	130	

PRODUCTION PROGRAM

According to EU directives: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

Unit: in				•
Drawn	0.551 - 3	0.787 - 2.559	Thick. 0.472 - 2.165	0.787 - 2.5
Extruded	1.181 - 10	1.181 - 6.5	Thick. 1.181 - 5	-

This alloy has high mechanical properties, excellent resistance to fatigue, good attitude to forging and a fair machinability.

Main applications: high structural resistance components for aircraft and defense.

Samples of fi nished products made of Eural bars

Properties T3/T		Γ4/T	6	
Machinability				
Protective anodizing				
Decorative anodizing				
Hard anodizing				
Resistance to atmospheric corrosion				
Resistance to marine corrosion				
MIG-TIG weldability				
At resistance weldability				
Brazing weldability				
Plastic formability when cold				
Plastic formability when hot				

Chemical composition				
Si	0.50 - 1.20			
Fe	≤ 0.70			
Cu	3.90 - 5.00			
Mn	0.40 - 1.20			
Mg	0.20 - 0.80			
Cr	≤ 0.10			
Ni				
Zn	≤ 0.25			
Ti	≤ 0.15			
Pb				
Others	Each 0.05 Total 0.15			
Al	Remainder			

Physical properties				
Donaitu	lb	0.1012		
Density	in ³	0.1012		
Modulus of elasticity	ksi	10,500		
Coeffi cient of thermal expansion	x10 ⁻⁶ °F	12.8		
The arrest and addition at COOF	Btu	T4: 77.0		
Thermal conductivity at 68°F	ft h °F	T6: 89		
Typical algebraal registivity at 60°C	Ω mm 2	T4: 0.051		
Typical electrical resistivity at 68°F	m	T6: 0.043		

						To the second se	
		Minimum n	nechanical	nron	ortios		
0.1012		Temper	Diam. in		YTS ksi	A%	HBW Typical
40.500	_	T3	≤ 3	55.1	42.1	8	110
10,500		T351	≤ 3	55.1	42.1	6	110
	Drawn	T4	≤ 3	55.1	31.9	12	110
12.8	ص ا	T451	≤ 3	55.1	31.9	10	110
		Т6	≤ 3	65.3	55.1	8	140
T4: 77.0		T651	≤ 3	65.3	55.1	6	140
T6: 89		T4, T4510, T4511	≤ 3	59.5	39,2	12	110
		T4, T4510, T4511	$3 < D \le 6$	56.5	36.3	10	110
T4: 0.051	eq	T4, T4510, T4511	6 < D ≤ 8	50.8	33.4	8	110
T6: 0.043	Extruded	T6, T6510, T6511	≤ 3	66.7	60.2	7	140
	Ä	T6, T6510, T6511	$3 < D \le 6$	67.4		7	140
		T6, T6510, T6511	6 < D ≤ 8	62.4		6	140
		T6, T6510, T6511	8 < D ≤ 10	60.9	46.4	5	140

2014A by EURAL

Colour code **Brown**

PRODUCTION PROGRAM

Unit: in				•
Drawn	0.551 - 3	0.787 - 2.559	Thick. 0.472 - 2.165	0.787 - 2.5
Extruded	1.181 - 10	1.181 - 6.5	Thick. 1.181 - 5	-

According to EU directives: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

This alloy has high mechanical properties, excellent resistance to fatigue, good attitude to forging and a fair machinability.

2014A by Eural can also be made according to aerospace BS L168 standard, which requires higher mechanical properties compared to traditional EN standards. This version is available only for extruded bars in T6511 temper, from diameter 1.181 in up to 6 in.

Main applications: High structural resistance components for aircraft and defense.

Samples of finished products made of Eural bars

Properties T3		T3/	Γ4/T	6
Machinability				
Protective anodizing				
Decorative anodizing				
Hard anodizing				
Resistance to atmospheric corrosion				
Resistance to marine corrosion				
MIG-TIG weldability				
At resistance weldability				
Brazing weldability				
Plastic formability when cold				
Plastic formability when hot				

1			
Excellent	Good	Acceptable	Not recommended

Chemical composition				
Si	0.50 - 0.90			
Fe	≤ 0.50			
Cu	3.90 - 5.00			
Mn	0.40 - 1.20			
Mg	0.20 - 0.80			
Cr	≤ 0.10			
Ni	≤ 0.10			
Zn	≤ 0.25			
Ti	≤ 0.15			
Pb				
Others	Each 0.05 Total 0.15			
Al	Remainder			

Physical properties			
Danaih	lb	0.4040	
Density	in ³	0.1012	
Modulus of elasticity	ksi	10,500	
Coeffi cient of thermal expansion	x10 ⁻⁶ °F	12.8	
Thermal conductivity at 60°C	Btu	T6: 89	
Thermal conductivity at 68°F	ft h °F	10. 09	
Timinal alastinal masiativity at COST	Ω mm 2	T6: 0.043	
Typical electrical resistivity at 68°F	m	10. 0.043	

		Minimum	mechanica	ıl pro	pertie	S	
0.1012				UTS	YTS		HBW
0.1012		Temper	Diam. in	ksi	ksi	A%	Typical
10 500		Т3	≤ 3	55.1		8	110
10,500	_	T351	≤ 3	55.1		6	110
	Drawn	T4	≤ 3	55.1	31.9	12	110
40.0	٥	T451	≤ 3	55.1	31.9	10	110
12.8		T6	≤3	65.3		8	140
		T651 T4, T4510, T4511	≤ 3 ≤ 3		55.1 39.2	6 12	140
TO 00		T4, T4510, T4511	3 < D ≤ 6		36.3	10	110
T6: 89	D	T4, T4510, T4511	3 < D ≤ 8		33.4	8	110
	nde	T6, T6510, T6511	≤3		60.2	7	140
	Extruded	T6, T6510, T6511	3 < D ≤ 6		60.9	7	140
T6: 0.043	Ш	T6, T6510, T6511	6 < D ≤ 8		50.8	6	140
		T6, T6510, T6511	8 < D ≤ 10		46.4	5	140
	ω τ	T6, T6510, T6511	≤ 3	71.1	63.8	7	-
	-168 Jack	T6, T6510, T6511	3 < D ≤ 6		63.1	7	-
	Xfr	T6, T6510, T6511	6 < D ≤ 8		60.9	7	-
		T6, T6510, T6511	8 < D ≤ 10	63.1	56.6	7	

6026 by EURAL **LEAD FREE**

FREE CUTTING **Aluminum alloy**

According to

RoHS II, ELV, REACH directives

Application fields

LEAD FREE by EURAL is extremely versatile, due to its medium-high mechanical properties, good attitude to anodizing, good weldability, good attitude to forging, good corrosion resistance

6026 LEAD FREE by EURAL is suitable For components used in several industries as automotive, electric and electronic, valves, oleohydraulic, pneumatic, defence.

Ecological choice

For many years, the European Community has worked to reduce The content of hazardous substances. The latest directive RoHS (2018/740/EU) and REACH fix the limit of lead (Pb) in aluminum alloy to 0.1% starting from 05/18/2021 (previously it was 0.4%). Eural Gnutti has anticipated future restrictions of such directives creating the alloy 6026 LEAD FREE by EURAL.

The birth of 6026 LEAD FREE by EURAL

6026 LEAD FREE by EURAL is an innovative alloy designed and developed by Eural Gnutti S.p.A. R&D laboratories in order to meet the strictest requirements in critical automotive applications such as brake systems.

High machinability 6026 LEAD FREE by EURAL is particularly suitable for being machined on high speed automatic lathes due to extremely good chip forming.

No tin

On many alloys of 6000 series lead (Pb) has been replaced with tin (Sn) which, as it has been proved, causes weakness and cracking of the machined parts when submitted to stress and High temperature (>160°C / 320°F). Due to its brittle nature, tin has the dangerous tendency to suddenly break without significant previous deformation (strain).

6026 LEAD FREE by EURAL does not contain tin.

Alternative to:

6026 LEAD FREE by EURAL is the best alternative to several aluminum alloys such as 2007, 2011, 2015, 2028, 2030, 2044, 6012, 6012A, 6020, 6021, 6023, 6028, 6033, 6040, 6041, 6042, 6061, 6082, 6262, 6064A, 6262A, 6351, 7020. 6026 LEAD FREE is an excellent replacement of brass, due to its good machinability, good attitude to forging, medium-high mechanical properties. Moreover, since 6026 LEAD FREE by EURAL has a specific gravity of 1/3 compared to brass, it results extremely convenient costwise.

Ultrasonic tested billets

All semi-finished products in 6026 LEAD FREE by EURAL are made of 100% ultrasonic tested billets according to

SAE AMS-STD-2154 class A.

Compatibility in drawings

was born on 2002, and it has been registered to the Aluminum Association and to EN standards with a lead content of $Pb \le 0.4\%$.

Therefore, 6026 LEAD FREE by EURAL does not need any variations in drawings where 6026 is already indicated.

Lead (Pb) and tin (Sn) can be present as traces, within the limit of 0.05%, as prescribed by international regulations.

Production program

JRAL is available In drawn or extruded conditions. Drawn round bars from .236" to 3", temper T6, T8 or T9.

Extruded round bars from 1.181" to 10" temper T6.

Square, rectangular, hexagonal bars are available.

A wide range of drawn bars are also available in h9 tolerance.

6026 By EURAL **LEAD FREE**

According to EU directives:

2000/53/EC (ELV) - 2018/740/EU (RoHS II)

Aluminum with technology

PRODUCTION PROGRAM

Unit: in				•
Drawn	0.236 - 3	0.472 - 2.559	Thick. 0.472 - 2.165	0.472 - 2.362
Extruded	1.181 - 10	1.969 - 6.5	Thick. 1.181 - 5	-

Alloy 6026 LEAD FREE is the best option for machinability since recent limitations by RoHS (2018/740/EU) and REACH on lead content allowance (Pb ≤0.1%). It is particularly suitable for being machined on high-speed automatic lathes. 6026 LEAD FREE offers:

- Excellent chip forming performanceGood attitude to anodizing
- · Good corrosion resistance
- Excellent surface finishing (low roughness)
- · Good for forging

It is a much better solution than aluminum + Tin (Sn) alloys because it is free From any limitation on possible application (final parts subjected to high stress, low or high temperatures). It can replace 2007, 2011, 2015, 2028, 2030, 2044, 6012, 6012A, 6021, 6023, 6028, 6033, 6040, 6041, 6042, 6061, 6065, 6082, 6262, 6064A, 6262A, 6351,6020, 7020 alloys.

Main applications: automotive industry, electric and electronic industry, hot forging, bolts, nuts, threaded parts. Samples of finished products made of Eural bars

Properties	Т6	T8/T9	
Machinability			
Protective anodizing			
Decorative anodizing			
Hard anodizing			
Resistance to atmospheric corrosion			
Resistance to marine corrosion			
MIG-TIG weldability			
At resistance weldability			
Brazing weldability			
Plastic formability when cold			
Plastic formability when hot			

MD70201.02 US REV 07 03/11/16

Che	emical composition
Si	0.60 - 1.40
Fe	≤0.70
Cu	0.20 - 0.50
Mn	0.20 - 1.00
Mg	0.60 - 1.20
Cr	≤0.30
Ni	
Zn	≤0.30
Ti	≤0.20
Sn	≤0.05
Pb	≤0.05* (traces)
Bi	0.50 - 1.50
Others	Each 0.05 Total 0.15

Al	Remainder
* 6026 is re	enistered with Ph < 0.40

Physical properties					
Density	lb in ³	0.0983			
Modulus of elasticity	ksi	10,008			
Coefficient of thermal expansion	x10 ⁻⁶ °F	13.0			
Thermal conductivity at 68°F	Btu ft h °F	98.8			
Electrical resistivity at 68°F	$\frac{\Omega \text{ mm}^2}{\text{m}}$	0.039			

	The same of the sa	9

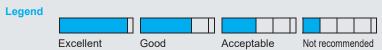
	Mechanical properties					
	Temper	Diam In	UTS ksi	YTS ksi	A%	HBW
	Т6	≤3.25	54.0	44.0	6	95
Drawn	Т8	≤3.25	50.0	46.0	3	95
	Т9	≤3.25	52.0	48.0	3	95
pe	Т6	≤5.5	54.0	44.0	6	95
Extruded	Т6	5.501 - 8	49.0	36.0	6	90
ш	Т6	8.001 - 10	44.0	29.0	6	90

PRODUCTION PROGRAM

According to EU directives:

2000/53/EU (ELV) - 2011/65/EU (RoHS II)

Unit: mm				•
Drawn	0.236 - 3	0.394 - 2.559	Thick. 0.472 - 2.165	0.394 - 2.5
Extruded	1.181 - 10	2 - 6.5	Thick. 1.181 - 5	-


PRESENTATION

This innovative alloy has been conceived and developed in Eural Gnutti SpA's research laboratories, in order to meet the most recent standards for the protection of the environment. It is particularly suitable for being machined on high speed automatic lathes. It has good resistance to corrosion, medium-high mechanical properties, good suitability for decorative and industrial hard anodizing. It is also used for hot forging purposes. Eural 6026 alloy does not contain tin (Sn) which, as it has been proved, causes weakness and cracking of the machined parts when submitted to stress and high temperature. It can replace 6061, 6082, 6064A, 6042, 6262, 6012, 2007, 2030 alloys.

Main applications: automotive industry, electric and electronic industry, hot forging, screws, bolts, nuts, threaded parts.

Samples of finished products made of Eural bars

Properties T6		T8/T9	T8/T9	
Machinability				
Protective anodizing				
Decorative anodizing				
Hard anodizing				
Resistance to atmospheric corrosion				
Resistance to marine corrosion				
MIG-TIG weldability				
At resistance weldability				
Brazing weldability				
Plastic formability when cold	ability when cold			
Plastic formability when hot				

Chemical composition			
Si	0.60 - 1.40		
Fe	≤ 0.70		
Cu	0.20 - 0.50		
Mn	0.20 - 1.00		
Mg	0.60 - 1.20		
Cr	≤ 0.30		
Ni			
Zn	≤ 0.30		
Ti	≤ 0.20		
Sn	≤ 0.05		
Pb	≤ 0.40		
Bi	0.50 - 1.50		
Others	Each 0.05 Total 0.15		
Al	Remainder		

Physical properties			
Donoity	lb	0.0002	
Density	in ³	0.0983	
Modulus of elasticity	ksi	10,008	
Coeffi cient of thermal expansion	x10 ⁻⁶	42.0	
Coem cient of thermal expansion	°F	13.0	
Thermal conductivity at 68°F	Btu	98.8	
	ft h °F	90.0	
Typical algorization registryity at 60°E	Ω mm ²	0.039	
Typical electrical resistivity at 68°F	m	0.039	

WWW		ra		m
VVVVV	/.cu		.CU	

	Minim	um mechanica	al properties		
			UTS YTS		HBW
	Temper	Diam. in	ksi ksi	A%	Typica
	T6	≤ 3	53.7 43.5	8	95
Drawn	T8	≤ 3	50.0 45.7	4	95
	Т9	≤ 3	52.2 47.9	4	95
D	T6	≤ 5.5	53.7 43.5	8	95
Extruded	T6	5.5 < D ≤ 8	49.3 36.3	8	90
ш	T6	8 < D ≤ 10	43.5 29	8	90

6064A by EURAL

Color code orange

PRODUCTION PROGRAM

Unit: in				•
Drawn	0.236 - 3	0.394 - 2.559	Thick. 0.472 - 2.165	0.394 - 2.5
Extruded	1.181 - 10	2 - 6.5	Thick. 1.181 - 5	-

According to EU directives: 2000/53/EU (ELV) - 2011/65/EU (RoHS II)

This alloy has good machinability and high mechanical properties. Moreover it has good resistance to corrosion and suitability to hard, protective and decorative anodizing.

Main applications: particulars for braking systems for automotive, structural components for civil constructions, railroad and heavy street vehicles.

Samples of finished products made of Eural bars

Properties	T6	T8/T9	9
Machinability			
Protective anodizing			
Decorative anodizing			
Hard anodizing			
Resistance to atmospheric corrosion			
Resistance to marine corrosion			
MIG-TIG weldability			
At resistance weldability			
Brazing weldability			
Plastic formability when cold			
Plastic formability when hot			

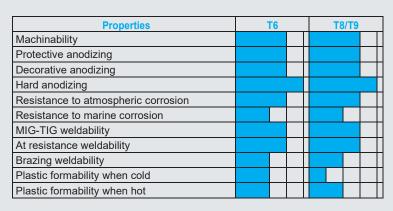
Excellent	Good	Acceptable	Not recommended

Chemical composition		
Si	0.40 - 0.80	
Fe	≤ 0.70	
Cu	0.15 - 0.40	
Mn	≤ 0.15	
Mg	0.80 - 1.20	
Cr	0.04 - 0.14	
Ni		
Zn	≤ 0.25	
Ti	≤ 0.15	
Pb	0.20 - 0.40	
Bi	0.40 - 0.80	
Others	Each 0,05 Total 0,15	
Al	Remainder	

b 0.0983
si 10,008
10 ⁻⁶ °F
98.8
mm ² 0.039

	Minimum mechanical properties					
			UTS	YTS		HBW
	Temper	Diam. in	ksi	ksi	A%	Typical
_	T6	≤ 3	45.0	37.7	8	95
Drawn	Т8	≤ 3	50.0	45.7	4	95
_	T9	≤ 3	52.2	47.1	4	95
Extruded	T6, T6510, T6511	≤ 5.5	45.0	37.7	8	95
Extr	T6, T6510, T6511	5.5 < D ≤ 10	37.7	34.8	8	90

PRODUCTION PROGRAM


Unit: in		•			
Drawn	0.236 - 3	0.394 - 2.559	Thick. 0.472 - 2.165	0.394 - 2.5	
Extruded	1.181 - 10	2 - 6.5	Thick. 1.181 - 5	-	

This alloy has good machinability and high mechanical characteristics. Moreover, it has good resistance to corrosion and suitability to hard, protective and decorative anodizing.

Main applications: structural components for civil constructions, railroad and street heavy vehicles.

Samples of finished products made of Eural bars

Chemical composition				
Si	0.40 - 0.80			
Fe	≤ 0.70			
Cu	0.15 - 0.40			
Mn	≤ 0.15			
Mg	0.80 - 1.20			
Cr	0.04 - 0.14			
Ni				
Zn	≤ 0.25			
Ti	≤ 0.15			
Pb	0.40 - 0.70			
Bi	0.40 - 0.70			
Others	Each 0.05 Total 0.15			
Al	Remainder			

Physical properties			
Deneite	lb	0.0000	
Density	in ³	0.0983	
Modulus of elasticity	ksi	10,008	
Coeffi cient of thermal expansion	x10 ⁻⁶	40.0	
	°F	13.0	
The arrest and the finite of COSE	Btu	98.8	
Thermal conductivity at 68°F	ft h °F	90.0	
Turning also shained manishing the of COST	Ω mm ²	0.038	
Typical electrical resistivity at 68°F	m	0.036	

	Minimu	m mechanica	I propertie	\$	
			UTS YTS		HBW
	Temper	Diam. in	ksi ksi	A%	Typical
_	Т6	≤ 3	42.1 34.8	10	85
Drawn	Т8	≤ 2	50.0 45.7	4	-
	Т9	≤2	52.2 47.9	4	-
ded	Т6	≤ 8	37.7 34.8	10	75
Extruded					

6262A by EURAL

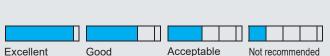
Color code green

PRODUCTION PROGRAM

Unit: in				•
Drawn	0.236 - 3	0.394 - 2.559	Thick. 0.472 - 2.165	0.394 - 2.5
Extruded	1.181 - 10	2 - 6.5	Thick. 1.181 - 5	-

According to EU directives: 2000/53/EU (ELV) – 2011/65/EU (RoHS II)

PRESENTATION


This is an ecologic alloy, it does not have lead, it has good machinability and high mechanical characteristics. Moreover, it has a good resistance to corrosion and suitability to hard, protective and decorative anodizing. It is an alternative to 6012, 6262, 6020, 6023 alloys.

Main applications: machining on high-speed automatic lathes, particulars for automotive applications, automatic transmission shafts, valves and clutches, hydraulic parts.

NOTE: it is particularly suitable for the realization of parts not subject to extreme heat solicitations (max 284°F) and therefore it is appropriate for automotive parts as automatic transmission valves. For higher temperatures, we suggest to use other Eural alloys, as 6026LF, 6026 or 6064A.

Samples of finished products made of Eural bars

Properties	Т6		T8/T9)
Machinability				
Protective anodizing				
Decorative anodizing				
Hard anodizing				
Resistance to atmospheric corrosion				
Resistance to marine corrosion				
MIG-TIG weldability				
At resistance weldability				
Brazing weldability				
Plastic formability when cold				
Plastic formability when hot				

Chemical composition				
Si	0.40 - 0.80			
Fe	≤ 0.70			
Cu	0.15 - 0.40			
Mn	≤ 0.15			
Mg	0.80 - 1.20			
Cr	0.04 - 0.14			
Ni				
Zn	≤ 0.25			
Ti	≤ 0.10			
Bi	0.40 - 0.90			
Sn	0.40 - 1.00			
Others	Each 0.05 Total 0.15			
Al	Remainder			

Physical properties			
Density	in ³	0.0983	
Modulus of elasticity	ksi	10,008	
Coefficient of thermal expansion	x10 ⁻⁶ °F	13.0	
Thermal conductivity at 68°F	Btu ft h °F	98.8	
Typical electrical resistivity at 68°F	$\frac{\Omega \text{ mm}^2}{\text{m}}$	0.039	

www.eural.com

	Minimum mechanical properties				
			UTS YTS	HBW	
	Temper	Diam. in	ksi ksi	A% Typical	
Drawn	Т6	≤ 3	42.1 34.8	10 -	
	Т8	≤ 2	50.0 45.7	4 -	
	Т9	≤ 2	52.2 47.9	4 -	
ded	T6	≤ 8	37.7 34.8	10 -	
Extruded					

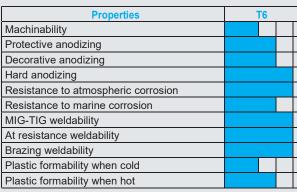
Legend

PRODUCTION PROGRAM

According to EU directives:

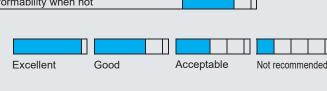
2000/53/EU (ELV) - 2011/65/EU (RoHS II)

Unit: in				•
Drawn	0.236 - 3	0.394 - 2.559	Thick. 0.472 - 2.165	0.394 - 2.5
Extruded	1.181 - 10	2 - 6.5	Thick. 1.181 - 5	-



PRESENTATION

This alloy has medium mechanical properties, but high resistance to corrosion and excellent attitude to weldability, hot forging and anodizing.


Main applications: highly stressed structural parts for ground and nautical means of transport, anti-impact lateral bars, door frame, space frame and sub frame for cars, hydraulic systems, stairs and scaffoldings, platforms, screws and rivets, particulars for nuclear plants, food industry.

Samples of finished products made of Eural bars

Chemical composition			
Si	0.70 - 1.30		
Fe	≤ 0.50		
Cu	≤ 0.10		
Mn	0.40 - 1.00		
Mg	0.60 - 1.20		
Cr	≤ 0.25		
Ni			
Zn	≤ 0.20		
Ti	≤ 0.10		
Pb			
Bi			
Others	Each 0.05 Total 0.15		
Al	Remainder		

Physical properties			
Density	lb in ³	0.0979	
Modulus of elasticity	ksi	10,008	
Coeffi cient of thermal expansion	x10 ⁻⁶ °F	13.3	
Thermal conductivity at 68°F	Btu ft h °F	95.9	
Typical electrical resistivity at 68°F	$\frac{\Omega \text{ mm}^2}{\text{m}}$	0.037	

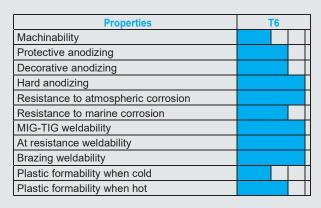
	Minimu	m mechanica	I properties		
			UTS YTS		HBW
	Temper	Diam. in	ksi ksi	A%	Typical
Drawn	T6	≤ 3	45.0 37.0	10	95
p	Т6	≤ 6	45.0 37.7	8	95
Extruded	Т6	6 < D ≤ 8	40.6 34.8	6	95
<u> </u>	Т6	8 < D ≤ 10	39.2 29.0	6	95

Colour code EU blue

PRODUCTION PROGRAM

Unit: in				•
Drawn	0.236 - 3	0.394 - 2.559	Thick. 0.472 - 2.165	0.394 - 2.5
Extruded	1.181 - 10	2 - 6.5	Thick. 1.181 - 5	-

According to EU directives: 2000/53/EU (ELV) – 2011/65/EU (RoHS II)



PRESENTATION

This alloy has medium mechanical properties, but high resistance to corrosion and excellent attitude to weldability, hot forging and anodizing.

Main applications: highly stressed structural parts for ground and nautical means of transport, anti-impact lateral bars, door frame, space frame and sub frame for cars, hydraulic systems, stairs and scaffoldings, platforms, screws and rivets, particulars for nuclear plants, food industry.

Samples of finished products made of Eural bars

	<u> </u>
Si	0.40 - 0.80
Fe	≤ 0.70
Cu	0.15 - 0.40
Mn	≤ 0.15
Mg	0.80 - 1.20
Cr	0.04 - 0.35
Ni	
Zn	≤ 0.25
Ti	≤ 0.15

Each 0.05 Total 0.15

Remainder

Pb Bi

Others

ΑI

Chemical composition

Physical properties									
Density	lb in ³	0.0979							
Modulus of elasticity	ksi	10,008							
Coefficient of thermal expansion	x10 ⁻⁶ °F	13.1							
Thermal conductivity at 68°F	Btu ft h °F	99.4							
Typical electrical resistivity at 68°F	$\frac{\Omega \text{ mm}^2}{\text{m}}$	0.037							

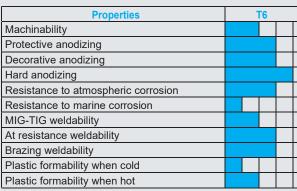
	Minii	mum mechanica	l prop	erties		
			UTS	YTS		HBW
	Temper	Diam. in	ksi	ksi	A%	Typical
Drawn	Т6	≤3	42.1	34.8	10	95
Extruded	Т6	≤ 8	37.7	34.8	8	95

PRODUCTION PROGRAM

According to EU directives:

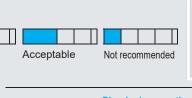
2000/53/EU (ELV) - 2011/65/EU (RoHS II)

Unit: in				•
Drawn	0.75 - 3	-	-	-
Extruded	0.181 - 10	2 - 6.5	Thick. 1.181 - 5	-



PRESENTATION

This alloy has extremely properties high mechanical and high sistance to fatigue. Moreover, it has good corroresistance to hard, protective decorative anodizing.


Main applications: high resistance structural parts for mechanical industry, aviation, defense, motorbike and automotive.

Samples of finished products made of Eural bars

Chemical composition									
Si	≤ 0.40								
Fe	≤ 0.50								
Cu	1.20 - 2.00								
Mn	≤ 0.30								
Mg	2.10 - 2.90								
Cr	0.18 - 0.28								
Ni									
Zn	5.10 ÷ 6.10								
Ti	≤ 0.20								
Pb									
Bi									
Others	Each 0.05 Total 0.15								
Al	Remainder								

Physical properties									
Density	in ³	0.1012							
Modulus of elasticity	ksi	10,443							
Coefficient of thermal expansion	x10 ⁻⁶ °F	13.1							
Thermal conductivity at 68°F	Btu ft h °F	74.7							
Typical electrical resistivity at 68°F	$\frac{\Omega \text{ mm}^2}{\text{m}}$	0.052							

Samples			cts made of Eural b	ars				
			900		4			
S			Minimum med	chanical p	rope	rties		
lb						YTS		HBW
in ³	0.1012		Temper	Diam. in	ksi	ksi	A%	Typical
ksi	10,443		Т6	≤ 3	78.3	70.3	7	150
	10,443	Drawn	T651	≤ 3	78,3	70.3	5	150
x10 ⁻⁶		L	T73	≤ 3	66.0	55.8	10	135
°F	12 1		110	-0	00.0			
	13.1		T7351	≤ 3	66.0	55.8	8	135
Btu		_	T7351 T6, T6510, T6511	≤ 3 ≤ 4	66.0 81.2	55.8 72.5	7	150
Btu ft h °F	74.7	-	T7351 T6, T6510, T6511 T6, T6510, T6511	≤ 3 ≤ 4 4 < D ≤ 6	66.0 81.2 79.8	55.8 72.5 63.8	7 5	150 150
	74.7	-	T7351 T6, T6510, T6511 T6, T6510, T6511 T6, T6510, T6511	≤ 3 ≤ 4 4 < D ≤ 6 6 < D ≤ 8	66.0 81.2 79.8 63.8	55.8 72.5 63.8 58.0	7 5 5	150 150 150
ft h °F		Extruded D	T7351 T6, T6510, T6511 T6, T6510, T6511	≤ 3 ≤ 4 4 < D ≤ 6 6 < D ≤ 8 ≤ 3	66.0 81.2 79.8 63.8 68.9	55.8 72.5 63.8 58.0 58.7	7 5	150 150

Billets extraction in foundry

Automatic ultrasonic control system for the entire length of the billet according to class "A" of SAE AMS-STD-2154 regulation

5500-T Indirect extrusion press

R&D Department

Imprint of Eural logo, alloy code and batch number on all extruded bars

Particular of bars warehouse

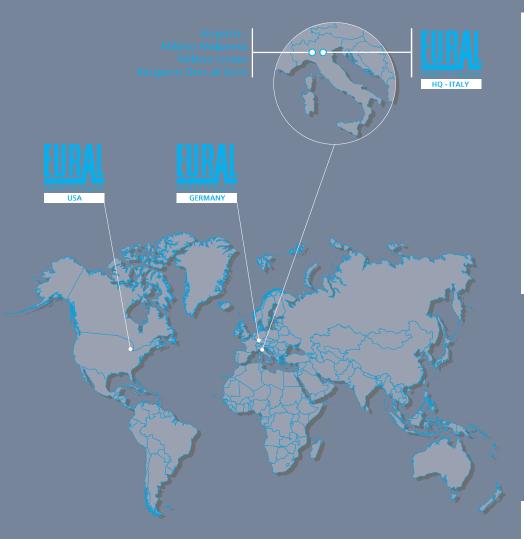
Eural Gnutti extrusion plant in Rovato (Brescia), Italy

Eural Gnutti foundry plant in Pontevico (Brescia), Italy

National and Company Alloy Designations

ALLOY	AA	EN	EN (CS)	ASTM	BS	BS(OLD)	DIN	WNR	JIS	JIS(OLD)	NF	NF(OLD)	SFS
	Intl.	Intl.	Intl.	USA	GB	GB	DE	DE	JP	JP	FR	FR	FI
2033			Al Cu2,5BiMnMg										
2011	2011	2011	Al Cu6BiPb	2011	2011	FC1	AlCuBiPb	3.1655	A2011		2011	A-U5PbBi	
2030	2030	2030	Al Cu4PbMg	\			~AlCuMgPb				2030	A-U4Pb	
2007	2007	2007	Al Cu4PbMgMn	\			AlCuMgPb	3.1645				~ A-U4Pb	
2017A	2017A	2017A	Al Cu4MgSi(A)	~2017	2017A		AlCuMg1	3.1325	~A2017	A3x2	2017A	A-U4G	
2024	2024	2024	Al Cu4Mg1	2024	2024	2L97	AlCuMg2	3.1355	A2024	A3x4	2024	A-U4G1	
6026	6026	6026	Al MgSiBi	6026									
6064A	6064A	6064A	Al Mg1SiBi	\									
6061	6061	6061	Al Mg1SiCu	6061	6061	H20	AlMg1SiCu	3.3211	A6061	A2x4	6061	A-GSUC	
6082	6082	6082	Al Si1MgMn		6082	H30	AlMgSi1	3.2315			6082	A-GSM0.7	2593
6262	6262	6262	Al Mg1SiPb	6262									
6262A	6262A	6262A	Al Mg1SiSn	\									
7075	7075	7075	Al Zn5,5MgCu	7075	7075	2L95	AlZnMgCu1,5	3.4365	A7075	A34x6	7075	A-Z5GU	

ALLOY	SNCH	SS	UNI	UNI(OLD)	UNS	NS	UNE	ASV	ALUSUISSE	CSA(OLD)	GOST(OLD)
	CH	SE	IT	IT							
2011	AlCu6BiPb	4355	9002/5	6362	A92011		L-3192		2500	CB60	
2030	AlCu4MgPb				A92030						
2007	AlCu4MgPb	4335	9002/8				L-3121		2118		
2017A			9002/2	3579	~A92017		L-3120		2100	CM41	D1/V65
2024	AlCu4Mg1,5		9002/4	3583	A92024		L-3140		2150	CG42	D16
6026											
6064A											
6061			9006/2	6170	A96061		L-3420	2079	6061	GS11N	AD33/AV
6082	AlMgSi1Mn	4212	~9006/4	3571		17305	L-3451	2005	6112	SG11R	AD35
6262											
6262A		·								·	
7075	AlZn6MgCu1,5		9007/2	3735	A97075		L-3710	2082	7215	ZG62	B95(V95)



Weight of aluminium bars in lbs/ft

Calculated on the Absolute Gravity (0.101 lbs/in³)

in			•	in			•		in			•
0,20	0,038	0,048	0,042	1,80	3,084	3,927	3,401		3,40	11,004	14,011	12,133
0,24	0,055	0,070	0,060	1,84	3,223	4,103	3,553		3,44	11,264	14,342	12,420
0,28	0,075	0,095	0,082	1,88	3,364	4,284	3,710		3,48	11,528	14,678	12,711
0,32	0,097	0,124	0,107	1,92	3,509	4,468	3,869		3,52	11,794	15,017	13,005
0,36	0,123	0,157	0,136	 1,96	3,657	4,656	4,032		3,56	12,064	15,360	13,302
0,40	0,152	0,194	0,168	 2,00	3,808	4,848	4,198	_	3,60	12,336	15,708	13,603
0,44	0,184	0,235	0,203	2,04	3,961	5,044	4,368		3,64	12,612	16,059	13,907
0,48	0,219	0,279	0,242	2,08	4,118	5,244	4,541		3,68	12,891	16,413	14,214
0,52	0,257	0,328	0,284	2,12	4,278	5,447	4,717		3,72	13,173	16,772	14,525
0,56	0,299	0,380	0,329	2,16	4,441	5,655	4,897		3,76	13,457	17,135	14,839
0,60	0,343	0,436	0,378	2,20	4,607	5,866	5,080		3,80	13,745	17,501	15,156
0,64	0,390	0,496	0,430	2,24	4,776	6,081	5,266		3,84	14,036	17,872	15,477
0,68	0,440	0,560	0,485	2,28	4,948	6,300	5,456		3,88	14,330	18,246	15,801
0,72	0,493	0,628	0,544	2,32	5,123	6,523	5,649		3,92	14,627	18,624	16,128
0,76	0,550	0,700	0,606	2,36	5,302	6,750	5,846		3,96	14,927	19,006	16,459
0,80	0,609	0,776	0,672	2,40	5,483	6,981	6,046		4,00	15,230	19,392	16,793
0,84	0,672	0,855	0,741	 2,44	5,667	7,216	6,249		4,20	16,791	21,380	18,515
0,88	0,737	0,939	0,813	2,48	5,854	7,454	6,455		4,40	18,428	23,464	20,320
0,92	0,806	1,026	0,888	2,52	6,045	7,697	6,665		4,60	20,142	25,646	22,209
0,96	0,877	1,117	0,967	2,56	6,238	7,943	6,879	_	4,80	21,931	27,924	24,183
1,00	0,952	1,212	1,050	 2,60	6,435	8,193	7,095		5,00	23,797	30,300	26,240
1,04	1,030	1,311	1,135	 2,64	6,634	8,447	7,315		5,20	25,739	32,772	28,381
1,08	1,110	1,414	1,224	 2,68	6,837	8,705	7,539		5,40	27,757	35,342	30,606
1,12	1,194	1,520	1,317	 2,72	7,042	8,967	7,765	_	5,60	29,851	38,008	32,915
1,16	1,281	1,631	1,412	 2,76	7,251	9,233	7,995		5,80	32,021	40,772	35,308
1,20	1,371	1,745	1,511	 2,80	7,463	9,502	8,229	_	6,00	34,268	43,632	37,785
1,24	1,464	1,864	1,614	 2,84	7,678	9,776	8,466	_	6,20	36,590	46,589	40,346
1,28	1,560	1,986	1,720	 2,88	7,895	10,053	8,706	_	6,40	38,989	49,644	42,991
1,32	1,659	2,112	1,829	 2,92	8,116	10,334	8,949	_	6,60	41,464	52,795	45,720
1,36	1,761	2,242	1,941	 2,96	8,340	10,619	9,196	_	6,80	44,015	56,043	48,533
1,40	1,866	2,376	2,057	 3,00	8,567	10,908	9,446		7,00	46,642	59,388	51,430
1,44	1,974	2,513	2,176	 3,04	8,797	11,201	9,700		7,20	49,346	62,830	54,411
1,48	2,085	2,655	2,299	 3,08	9,030	11,498	9,957	_	7,60	54,981	70,005	60,624
1,52	2,199	2,800	2,425	 3,12	9,266	11,798	10,217	_	8,00	60,921	77,568	67,174
1,56	2,317	2,950	2,554	 3,16	9,505	12,103	10,481	_	8,40	67,165	85,519	74,059
1,60	2,437	3,103	2,687	 3,20	9,747	12,411	10,748	_	8,80	73,714	93,857	81,280
1,64	2,560	3,260	2,823	 3,24	9,992	12,723	11,018	_	9,20	80,567	102,584	88,837
1,68	2,687	3,421	2,962	 3,28	10,241	13,039	11,292		9,60	87,726	111,698	96,730
1,72	2,816	3,586	3,105	 3,32	10,492	13,359	11,569	_	10,00	95,188	121,200	104,959
1,76	2,949	3,754	3,251	 3,36	10,746	13,683	11,849					

EURAL GNUTTI S.p.A. is certified:

ISO 9001:2015 - IATF 16949:2016 ISO 14001:2015 - prEN 9100:2016 AS 9100 D - JIS Q 9100:2016 - PED

EURAL GNUTTI S.p.A.

25038 Rovato (Brescia) Italy Via S. Andrea, 3 Company's capital € 10.000.000 Vat Reg. IT 00566100988

Phone + 39 030 7725011

Sections department: Fax +39 030 7701228 - sections@eural.com
Bars department: Fax +39 030 7702847 - bars@eural.com
Administration: Fax +39 030 7702837 - accounts@eural.com
Foundry: Fax+ 39 030 9930036 - foundry@eural.com

Eural USA Inc.

212 West Washington St. Unit 1108 60606 Chicago, IL - **USA** usa@eural.com Tel/Ph. +1 (312) 888.05.78

Eural Deutschland GmbH

Tübinger Strasse 26 D-70178 Stuttgart - **Germany** germany@eural.com Tel/Ph. +49 (173) 6155362